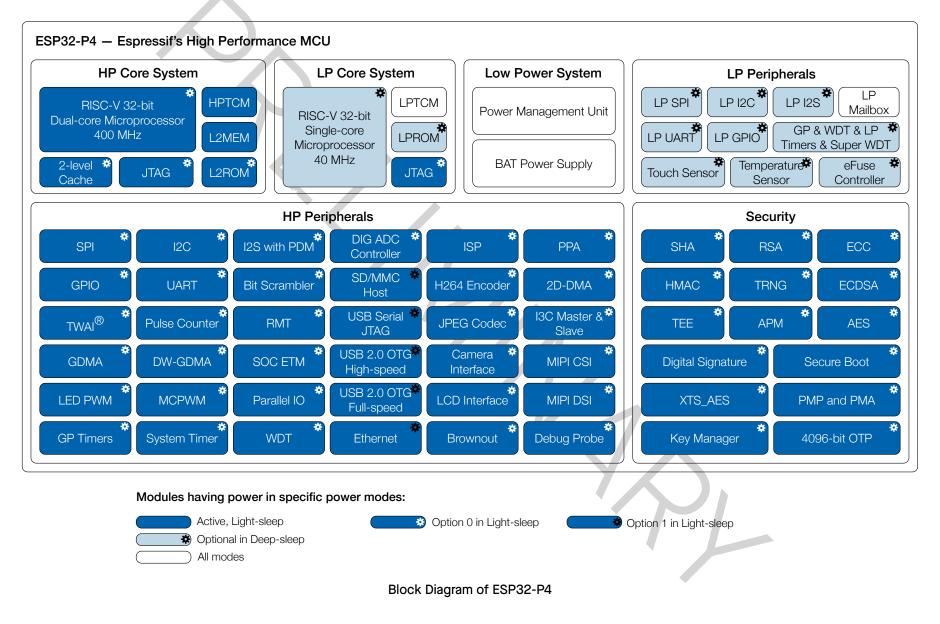
ESP32-P4 Series Datasheet

High-performance MCU with RISC-V single-core and dual-core microprocessors Powerful image and voice processing capability 16 MB or 32 MB PSRAM in the chip's package 55 GPIOs, rich set of peripherals QFN104 (10×10 mm) Package

Including:

ESP32-P4NRW16 ESP32-P4NRW32

Pre-release v0.2 Espressif Systems Copyright © 2024


Product Overview

ESP32-P4 is a high-performance MCU that supports large internal memory and has powerful image and voice processing capabilities. The MCU consists of a High Performance (HP) system and a Low Power (LP) system. The HP system contains a RISC-V dual-core CPU and rich peripherals, while the LP system contains a low-power RISC-V single-core CPU and various peripherals optimized for low-power applications. It has:

- 32-bit RISC-V dual-core processor up to 400 MHz with AI instruction extension and FPU for the HP system
- 32-bit RISC-V single-core processor up to 40 MHz for the LP system
- 128 KB of HP ROM, 16 KB of LP ROM, 768 KB of HP L2MEM, 32 KB of LP SRAM, and 8 KB system tightly-coupled memory (TCM), allowing for zero-wait access
- 96 KB of I1 cache, 128 KB/256 KB/512 KB of I2 cache
- Powerful image and voice processing functionality
 - JPEG Codec
 - Pixel processing accelerator (PPA)
 - Image signal processor (ISP)

- H264 encoder
- Rich set of peripheral interfaces and 55 GPIOs, ideal for various scenarios and complex applications
- Reliable security features ensured by
 - Cryptographic hardware accelerators that support AES-128/192/256, RSA, HMAC, ECC, digital signature, and secure boot
 - Key manager based on physically unclonable function (PUF)
 - True Random Number Generator (TRNG)
 - PMP and PMA
 - Permission control on accessing internal memory, external memory, and peripherals
 - External memory encryption and decryption

Block Diagram

Features

CPU and Memory

- 32-bit RISC-V dual-core processor up to 400 MHz for HP system
- 32-bit RISC-V single-core processor up to 40 MHz for LP system
- 128 KB HP ROM
- 16 KB LP ROM
- 768 KB HP L2MEM
- 32 KB LP SRAM
- 8 KB system TCM
- Multiple high-speed external memory interfaces
- Two-level high-speed cache

Advanced Peripheral Interfaces

- 55 programmable GPIOs
- Image and voice processing interfaces
 - JPEG Codec
 - Pixel processing accelerator (PPA)
 - Image signal processor (ISP)
 - H264 encoder
- Digital interfaces:
 - Four SPI
 - LP SPI
 - Five UART
 - LP UART
 - I3C
 - Two I2C
 - LP 12C
 - Three I2S
 - LP 12S
 - RMT
 - LED PWM, up to 8 channels

- Two Motor Control PWMs (MCPWMs), up to 6 channels
- Pulse Count Controller (PCNT), up to 4 channels
- Three TWAI[®] controllers, compatible with ISO 11898-1
- USB 2.0 OTG High-Speed
- USB 2.0 OTG Full-Speed
- USB 2.0 Full-Speed Serial/JTAG controller
- 100 Mbit Ethernet
- SDMMC 3.0 host
- MIPI CSI-2, 2-lane x 1.5 Gbps
- MIPI DSI, 2-lane x 1.5 Gbps
- 24-bit LCD parallel port
- 16-bit CAM parallel port
- Two GDMA controllers
- DW-GDMA controller
- 2D-DMA controller
- Bit scrambler
- Event Task Matrix (ETM)
- Parallel IO interface (PARLIO)
- LP Mailbox
- Analog interfaces:
 - Two 12-bit multi-channel ADCs
 - Temperature sensor
 - Touch sensor, up to 14 channels
 - Analog voltage comparator
 - Brown-out detector
- Timers:
 - Four 54-bit HP general-purpose timers
 - Two 52-bit HP system timers
 - Two 32-bit HP watchdog timers

- 48-bit LP general-purpose timer
- 32-bit LP watchdog timer
- Analog super watchdog timer

Security

- Secure boot
- One-time writing security ensured by eFuse OTP
- Cryptographic hardware acceleration:
 - AES-128/256 (FIPS PUB 197, against DPA attack)
 - SHA Accelerator (FIPS PUB 180-4)

- RSA Accelerator
- ECC Accelerator
- Elliptic Curve Digital Signature Algorithm (ECDSA)
- Digital signature
- HMAC
- Key Manager based on physically unclonable functions (PUF)
- Access permission management (APM)
- True Random Number Generator (TRNG)
- PMP and PMA

Applications (A Non-exhaustive List)

With large memory and powerful image and voice processing capability, ESP32-P4 is an ideal choice for IoT devices in the following areas:

- Image and Voice Processing
 - Image recognition
 - Speech recognition
 - IoT Edge
 - IP Camera (IPC)
- Smart Home
 - Light control
 - Smart button
 - Smart plug
 - Indoor positioning
 - Meter reading systems
 - Security systems
 - HVAC systems
- Industrial Automation
 - Industrial robot
 - Human machine interface (HMI)
 - Industrial field bus
 - Asset management
 - Personnel tracking

- Health Care
 - Health monitor
 - Baby monitor
- Consumer Electronics
 - Smartwatch and bracelet
 - Over-the-top (OTT) devices
 - Logger toys and proximity sensing toys
 - Gaming consoles
 - Wireless remote controls
- Smart Agriculture
 - Smart greenhouse
 - Smart irrigation
 - Agricultural robot
 - Livestock tracking
- Retail and Catering
 - POS machines
 - Service robot
- Generic Low-power IoT Sensor Hubs
- Generic Low-power IoT Data Loggers

Note:

Check the link or the QR code to make sure that you use the latest version of this document: https://www.espressif.com/documentation/esp32-p4_datasheet_en.pdf

Contents

_		
Pro	oduct Overview	2
Block	< Diagram	3
Featu	ires	4
Appli	cations	5
1	ESP32-P4 Series Comparison	11
1.1	Nomenclature	11
1.2	Comparison	11
2	Pin Definition	12
2.1	Pin Layout	12
2.2	Pin Description	13
2.3	Power Scheme	16
2.4	Strapping Pins	17
	2.4.1 Chip Boot Mode Control	17
	2.4.2 ROM Messages Printing Control	18
	2.4.3 JTAG Signal Source Control	19
3	Functional Description	20
3.1	CPU and Memory	20
	3.1.1 HP CPU	20
	3.1.2 LP CPU	20
	3.1.3 Processor Instruction Extensions (PIE)	21
	3.1.4 Internal Memory	21
	3.1.5 External Flash and SRAM	21
	3.1.6 Address Mapping Structure	22
	3.1.7 Cache	22
	3.1.8 eFuse Controller	23
3.2	System Clocks	23
	3.2.1 CPU Clock	23
	3.2.2 RTC Clock	23
	3.2.3 Audio PLL Clock	24
3.3	Analog Peripherals	24
	3.3.1 Analog-to-Digital Converter (ADC)	24
	3.3.2 Temperature Sensor	24
	3.3.3 Touch Sensor	24

	0.0.4	Angles Valtage Compareter	04
	3.3.4	Analog Voltage Comparator	24
	3.3.5	Brown-out Detector	24
0.4	3.3.6	Analog I2C Host	25
3.4	-		25
	3.4.1	General Purpose Input/Output Interface (GPIO)	25
	3.4.2	JPEG Codec	28
	3.4.3	Pixel-Processing Accelerator	28
	3.4.4	Image Signal Processor	29
	3.4.5	H264 Encoder	29
	3.4.6	Serial Peripheral Interface (SPI)	30
	3.4.7	LP SPI Interface	30
	3.4.8	Universal Asynchronous Receiver Transmitter (UART)	31
	3.4.9	LP UART Interface	31
	3.4.10	I3C Interface	31
	3.4.11	I2C Interface	32
	3.4.12	LP I2C Interface	32
	3.4.13	I2S Interface	32
	3.4.14	LP I2S Interface	32
	3.4.15	Remote Control Peripheral	33
	3.4.16	LED PWM Controller	33
	3.4.17	Motor Control PWM (MCPWM)	33
	3.4.18	Pulse Count Controller (PCNT)	33
	3.4.19	TWAI [®] Controller	34
	3.4.20	USB 2.0 OTG Full-Speed Interface	34
	3.4.21	USB 2.0 OTG High-Speed Interface	35
	3.4.22	USB Serial/JTAG Controller	36
	3.4.23	Ethernet MAC	36
	3.4.24	SD/MMC Host Controller	37
	3.4.25	MIPI CSI Interface	37
	3.4.26	MIPI DSI Interface	37
	3.4.27	LCD Interface	38
	3.4.28	CAM Interface	38
	3.4.29	General DMA Controller	38
	3.4.30	DW-GDMA Controller	38
		2D-DMA Controller	39
		Bit-Scrambler	39
		SoC Event Task Matrix (ETM)	39
		Parallel IO (PARLIO) Controller	40
		LP Mailbox	40
3.5		ower Management	40
3.6		and Watchdogs	40
0.0	3.6.1	General Purpose Timers	40
	3.6.2	System Timer	40
	3.6.3	Watchdog Timers	41
	3.6.4	LP General Purpose Timer	41
	3.6.5		
	0.0.0	Super Watchdog Timer	42

3.7	Crypto	graphy/Security Components	42
	3.7.1	AES Accelerator (AES)	42
	3.7.2	ECC Accelerator (ECC)	42
	3.7.3	HMAC Accelerator (HMAC)	43
	3.7.4	RSA Accelerator (RSA)	43
	3.7.5	SHA Accelerator (SHA)	43
	3.7.6	Digital Signature (DS)	44
	3.7.7	Elliptic Curve Digital Signature Algorithm (ECDSA)	44
	3.7.8	External Memory Encryption and Decryption (XTS_AES)	45
	3.7.9	Secure Boot	45
	3.7.10	Access Permission Management (APM)	45
	3.7.11	True Random Number Generator (TRNG)	45
	3.7.12	Key Manager	46
3.8	Periphe	eral Pin Configurations	46
4	Elec	ctrical Characteristics	54
4.1	Absolu	te Maximum Ratings	54
4.2	Recom	mended Operating Conditions	54
4.3	VFB1_\	/O1 Output Characteristics	55
4.4	DC Cha	aracteristics (3.3 V, 25 °C)	55
Rev	visior	n History	56

List of Tables

- 1-1 ESP32-P4 Series Comparison
- 2-1 Pin Description
- 2-2 Description of ESP32-P4 Power Supply Pins
- 2-3 Default Configuration of Strapping Pins
- 2-4 Boot Mode Control
- 2-5 ROM Message Printing Control
- 2-6 JTAG Signal Source Control
- 3-1 LP IO MUX Pin Functions
- 3-2 HP IO MUX Pin Functions
- 3-3 Peripheral Pin Configurations
- 4-1 Absolute Maximum Ratings
- 4-2 Recommended Operating Conditions
- 4-3 VDD_SPI Output Characteristics
- 4-4 DC Characteristics (3.3 V, 25 °C)

55

11

13

16

17

17

18

List of Figures

1-1	ESP32-P4 Series Nomenclature	11
2-1	ESP32-P4 Pin Layout (Top View)	12
3-1	Address Mapping Structure	22

1 ESP32-P4 Series Comparison

1.1 Nomenclature

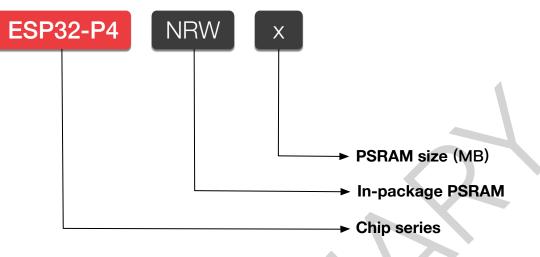


Figure 1-1. ESP32-P4 Series Nomenclature

1.2 Comparison

Table 1-1. ESP32-P4 Series Comparison

Ordering Code	In-package PSRAM	Ambient Temperature (°C)	SPI Voltage	Package
ESP32-P4NRW16	16 MB (OPI/HPI)	-40 ~ 85	1.8 V	QFN104
ESP32-P4NRW32	32 MB (OPI/HPI)	-40 ~ 85	1.8 V	QFN104

Note:

OPI of PSRAM supports transferring eight-bit commands, addresses, and data; HPI supports transferring eight-bit commands and addresses as well as 16-bit data.

2 Pin Definition

2.1 Pin Layout

Figure 2-1. ESP32-P4 Pin Layout (Top View)

2.2 Pin Description

Name	No.	Type ¹	Power Supply Pin	Function	
GPIOO	1	I/0/T	VDDPST_1	GPIOO, XTAL_32K_N	
GPI01	2	I/0/T	VDDPST_1	GPIO1, XTAL_32K_P	
GPIO2	3	I/0/T	VDDPST_1	GPIO2, TOUCH_O, MTCK	
GPIO3	4	I/0/T	VDDPST_1	GPIO3, TOUCH_1, MTDI	
GPIO4	5	I/0/T	VDDPST_1	GPIO4, TOUCH_2, MTMS	
GPI05	6	I/0/T	VDDPST_1	GPIO5, TOUCH_3, MTDO	
GPI06	7	I/0/T	VDDPST_1	GPIO6, TOUCH_4, GPSPI SPI2 HOLD	
GPI07	8	I/0/T	VDDPST_1	GPIO7, TOUCH_5, GPSPI SPI2 CS	
GPI08	9	I/0/T	VDDPST_1	GPIO8, TOUCH_6, GPSPI SPI2 D, UARTO_RTS	
VDDPST_1	10	P _{IO}	_	3.3 V LP IO power supply	
GPIO9	11	I/0/T	VDDPST_1	GPIO9, TOUCH_7, GPSPI SPI2 CK, UARTO_CTS	
GPIO10	12	I/0/T	VDDPST_1	GPI010, TOUCH_8, GPSPI SPI2 Q, UART1_TXD	
GPIO11	13	I/0/T	VDDPST_1	GPI011, TOUCH_9, GPSPI SPI2 WP, UART1_RTD	
GPI012	14	I/0/T	VDDPST_1	GPI012, TOUCH_10, UART1_RTS	
GPI013	15	I/0/T	VDDPST_1	GPI013, TOUCH_11, UARTO_CTS	
GPIO14	16	I/0/T	VDDPST_1	GPI014, TOUCH_12, LP_UART_TXD	
GPI015	17	I/0/T	VDDPST_1	GPI015, TOUCH_13, LP_UART_RXD	
GPIO16	18	I/0/T	VDDPST_1	GPIO16, ADC1_CHANNELO	
GPI017	19	I/0/T	VDDPST_1	GPIO17, ADC1_CHANNEL1	
GPIO18	20	I/0/T	VDDPST_1	GPIO18, ADC1_CHANNEL2	
GPIO19	21	I/0/T	VDDPST_1	GPIO19, ADC1_CHANNEL3	
VDDPST_2	22	P _{IO}	_	1.8/3.3 V HP IO power supply	
GPIO20	23	I/0/T	VDDPST_2	GPIO20, ADC1_CHANNEL4	
GPIO21	24	I/0/T	VDDPST_2	GPIO21, ADC1_CHANNEL5	
GPIO22	25	I/0/T	VDDPST_2	GPIO22, ADC1_CHANNEL6, DBG_PSRAM_CK	
00000			VDDPST 2	GPI023, ADC1_CHANNEL7, 50 MHz reference clock	
GPIO23	26	I/0/T	VDDPS1_2	output, DBG_PSRAM_CS	
VDD_HP_0	27	P_D	_	Digital power supply for HP system (1.1 ~ 1.3 V)	
FLASH_CS	28	0	VDDPST_3	FLASH_CS	
FLASH_Q	29	I/0/T	VDDPST_3	FLASH_Q	
FLASH_WP	30	I/0/T	VDDPST_3	FLASH_WP	
VDDPST_3	31	P _{IO}	_	Flash IO power supply	
FLASH_HOLD	32	I/0/T	VDDPST_3	FLASH_HOLD	
FLASH_CK	33	0	VDDPST_3	FLASH_CK	
FLASH_D	34	I/0/T	VDDPST_3	FLASH_D	
DSI_REXT	35	I/0/T	VDD_MIPI_DPHY	MIPI DSI PHY 4.02 k Ω external resistor	
DSI_DATAP1	36	I/0/T	VDD_MIPI_DPHY	MIPI DSI PHY DATAP1	
DSI_DATAN1	37	I/0/T	VDD_MIPI_DPHY	MIPI DSI PHY DATAN1	
DSI_CLKN	38	I/0/T	VDD_MIPI_DPHY	MIPI DSI PHY CLKN	

Table 2-1. Pin Description

Table 2-1 – cont'd from previous page						
Name	No.	Туре	Power Supply Pin	Function		
DSI_CLKP	39	I/0/T	VDD_MIPI_DPHY	MIPI DSI PHY CLKP		
DSI_DATAPO	40	I/0/T	VDD_MIPI_DPHY	MIPI DSI PHY DATAPO		
DSI_DATANO	41	I/0/T	VDD_MIPI_DPHY	MIPI DSI PHY DATANO		
VDD_MIPI_DPHY	42	P_{IO}	_	MIPI DPHY 2.5 V power supply		
CSI_DATANO	43	I/0/T	VDD_MIPI_DPHY	MIPI CSI PHY DATANO		
CSI_DATAPO	44	I/0/T	VDD_MIPI_DPHY	MIPI CSI PHY DATAPO		
CSI_CLKP	45	I/0/T	VDD_MIPI_DPHY	MIPI CSI PHY CLKP		
CSI_CLKN	46	I/0/T	VDD_MIPI_DPHY	MIPI CSI PHY CLKN		
CSI_DATAN1	47	I/0/T	VDD_MIPI_DPHY	MIPI CSI PHY DATAN1		
CSI_DATAP1	48	I/0/T	VDD_MIPI_DPHY	MIPI CSI PHY DATAP1		
CSI_REXT	49	I/0/T	VDD_MIPI_DPHY	MIPI CSI PHY 4.02 K Ω external resistor		
DM	50	I/0/T	VCCA	USB2 OTG PHY DM		
DP	51	I/0/T	VCCA	USB2 OTG PHY DP		
VCCA	52	P_{IO}	_	USB2 PHY PHY 3.3 V power supply		
GPIO24	53	I/0/T	VDDPST_4	GPI024, USB1P1_N0		
GPIO25	54	I/0/T	VDDPST_4	GPI025, USB1P1_P0		
VDD_HP_1	55	P_D		Digital power supply for HP system (1.1 ~ 1.3 V)		
GPIO26	56	I/0/T	VDDPST_4	GPIO26, USB1P1_N1		
GPIO27	57	I/0/T	VDDPST_4	GPI027, USB1P1_P1		
	E 0	50 L/O/T	VDDPST_4	GPIO28, GPSPI SPI2 CS, EMAC PHY RXDV,		
GPIO28	58	I/O/T		DBG_PSRAM_D		
	50		NODDOT 4	GPIO29, GPSPI SPI2 D, EMAC PHY RXDO,		
GPIO29 59		I/O/T	I/O/T VDDPST_4	DBG_PSRAM_Q		
VDDPST	60	P _{IO}	-	PSRAM 1.8 V power supply		
	01		VDDPST_4	GPIO30, GPSPI SPI2 CK, EMAC PHY RXD1,		
GPIO30	61	I/0/T	VDDPS1_4	DBG_PSRAM_WP		
001001	00		VEDEOT 4	GPIO31, GPSPI SPI2 Q, EMAC PHY RXER,		
GPIO31	62	I/O/T	VDDPST_4	DBG_PSRAM_HOLD		
VDDPST_4	63	P _{IO}	-	1.8/3.3 V HP IO power supply		
	64			GPIO32, I3CMST_SCL, GPSPI SPI2 HOLD, EMAC		
GPIO32	64	I/0/T	VDDPST_4	RMII CLK, DBG_PSRAM_DQ4		
001022	<u>e</u> e			GPIO33, I3CMST_SDA, GPSPI SPI2 WP, EMAC PHY		
GPI033	65	I/O/T	VDDPST_4	TXEN, DBG_PSRAM_DQ5		
GPIO34	66			GPIO34, GPSPI SPI2 IO4, EMAC PHY TXDO,		
GPI034	GPI034 66 I/O/T VDDPST_4		VDDPS1_4	DBG_PSRAM_DQ6		
GPI035 67 I/O/T			GPIO35, GPSPI SPI2 IO5, EMAC PHY TXD1,			
GPI035	67	1/0/1	VDDPST_4	DBG_PSRAM_DQ7		
VDDPST	68	P_{IO}	_	PSRAM 1.8 V power supply		
CDIO26 60 1/0/T VDDDOT 4 GPIO36, GPSPI S		GPIO36, GPSPI SPI2 IO6, EMAC PHY TXER,				
GPIO36	69	I/O/T	VDDPST_4	DBG_PSRAM_DQSO		
GPIO37	70	I/0/T	VDDPST_4	GPIO37, UARTO_TXD, GPSPI SPI2 IO7		
GPIO38	71	I/0/T	VDDPST_4	GPIO38, UARTO_RXD, GPSPI SPI2 DQS		
				Cont'd on next page		

Table 2-1 – cont'd from previous page

Name	Table 2-1 – cont'd from previous page Name No. Type Power Supply Pin Function					
VFB/VO1	72	P _O		External power supply pin, outputting 0.1 A current		
VFB/VO2	73	P _o		External power supply pin, outputting 0.1 A current		
VFB/V03	73	P _o		External power supply pin, outputting 0.1 A current		
VFB/VO4	75	P_o		External power supply pin, outputting 0.2 A current		
VDDPST_LDO	75	-		3.3 V external LDO power supply pin		
		P _A	_			
VDD_HP_2	77	P _D		Digital power supply for HP system $(1.1 \sim 1.3 \text{ V})$		
VDDPST_DCDC	78	P_{DCDC}		3.3 V external DCDC power supply pin		
FB_DCDC	79	P _{DCDC}	_	DC/DC feedback power supply pin		
EN_DCDC	80	0	VDDPST_DCDC	DC/DC enable		
GPIO39	81	I/0/T	VDDPST_5	GPI039, SD1_CDATAO, reference clock of 50 MHz		
				output, DBG_PSRAM_DQ8		
GPIO40	82	I/0/T	VDDPST_5	GPIO40, SD1_CDATA1, EMAC PHY TXEN,		
011040		1/0/1		DBG_PSRAM_DQ8		
GPIO41	83	I/0/T	VDDPST_5	GPIO41, SD1_CDATA2, EMAC PHY TXDO,		
GF1041	00	1/0/1	VDDF31_5	DBG_PSRAM_DQ9		
	84			GPIO42, SD1_CDATA3, EMAC PHY TXD1,		
GPIO42		I/0/T	VDDPST_5	DBG_PSRAM_DQ10		
	05	1/0/T	VDDPST_5	GPIO43, SD1_CCLK, EMAC PHY TXER,		
GPIO43	85	I/O/T		DBG_PSRAM_DQ11		
VDDPST_5	86	P _{IO}	_	1.8/3.3 V HP IO power supply		
	87 1/	1/0/T	I/O/T VDDPST_5	GPIO44, SD1_CCMD, EMAC RMII CLK,		
GPIO44		1/0/1		DBG_PSRAM_DQ13		
		GPIO45, SD1 CDATA4		GPIO45, SD1_CDATA4, EMAC PHY RXDV,		
GPIO45	88	I/O/T	VDDPST_5	DBG_PSRAM_DQ14		
				GPIO46, SD1_CDATA5, EMAC PHY RXDO,		
GPIO46	89	I/0/T	VDDPST_5	DBG PSRAM DQ15		
				GPI047, SD1_CDATA6, EMAC PHY RXD1,		
GPIO47	90	I/0/T	VDDPST_5	 DBG_PSRAM_DQS1		
GPIO48	91	I/0/T	VDDPST_5	GPIO48, SD1_CDATA7, EMAC PHY RXER		
VDD_HP_3	92	P_D	_	Digital power supply for HP system (1.1 ~ 1.3 V)		
				GPI049, ADC2_CHANNEL2, EMAC PHY TXEN,		
GPIO49	93	1/0/T	VDDPST_6	DBG_FLASH_CS		
				GPI050, ADC2_CHANNEL3, EMAC RMII CLK,		
GPI050	94	I/0/T	VDDPST_6	DBG_FLASH_Q		
				GPI051, ADC2_CHANNEL4, ANA_COMPO, EMAC		
GPIO51	95	1/0/T	VDDPST_6			
Ť				PHY RXDV, DBG_FLASH_WP		
GP1052	96	I/0/T	VDDPST_6	GPI052, ADC2_CHANNEL5, ANA_COMPO, EMAC		
	07			PHY RXDO, DBG_FLASH_HOLD		
VDDPST_6	97	P _{IO}	—	1.8/3.3 V HP IO power supply		
GPI053	98	I/0/T	VDDPST_6	GPI053, ADC2_CHANNEL6, ANA_COMP1, EMAC		
				PHY RXD1, DBG_FLASH_CK		

Table 2-1 – cont'd from previous page

Name	No.	Туре	Power Supply Pin	Function		
GPI054	99	1/0/T	VDDPST 6	GPI054, ADC2_CHANNEL7, ANA_COMP1, EMAC		
GP1034	99	1/0/1	VDDP31_0	PHY RXER, DBG_FLASH_D		
XTAL_N	100	—	_	External crystal output		
XTAL_P	101	—	—	External crystal input		
VDDA	102	P_A	_	Analog power supply (3.3 V)		
VBAT	103 P _A			Analog power supply or battery power supply (3.3		
VDAT			_	V)		
CHIP PU	104			High: on, enables the chip (powered up).		
	104	I		Low: off, the chip powers off (powered down).		
				Note: Do not leave the CHIP_PU pin floating.		
GND	105			Ground		

Table 2-1 – cont'd from previous page

¹ P_A : analog power supply; P_D : digital power supply; P_{IO} : IO pin power supply; P_O : output power supply; I: input; O: output; T: high impedance.

Note:

• For chip variants with an in-package flash, pin FLASH_CS, FLASH_Q, FLASH_WP, FLASH_HOLD, FLASH_CK and FLASH_D are dedicated to connecting the in-package flash, not for other uses, they are not led out to any chip pins, thus not available to users.

2.3 Power Scheme

	Туре	Pin Name	Power Supply to
	D	VDDPST_1	Group0 IO ¹
	P _{IO}	VDDPST_2	Group1 IO ¹
		VDDPST_3	Group2 IO ¹
		VDDPST_4	Group3 IO ¹
		VDDPST_5	Group4 IO ¹
		VDDPST_6	Group5 IO ¹
$\boldsymbol{<}$		VDD_MIPI_DPHY	MIPI IO and PHY
		VCCA	USB IO and PHY
		VBAT	
	P_A	VDDPST_LDO	Analog System
		VDDPST_DCDC	
		VDDPST	
		VDDA	
	P_D	VDD_HP_0/1/2/3	Digital System

Table 2-2. Description of ESP32-P4 Power Supply Pins

¹ For a complete list of IO pins powered by VDDPST_1 ~ VDDPST_6, see Table 2-1.

2.4 Strapping Pins

At each startup or reset, a chip requires some initial configuration parameters, such as in which boot mode to load the chip, etc. These parameters are passed over via strapping pins. After reset, the strapping pins work as regular pins.

ESP32-P4 has the following parameters controlled by the given strapping pins at chip reset:

- Chip boot mode GPI035, GPI036, GPI037, GPI038
- ROM messages printing GPI036
- JTAG signal source GPI034

GPIO35 is connected to the chip's internal weak pull-up resistor at chip reset. If GPIO35 has no external connection or the connected external line is in the high impedance state, this internal weak pull-up resistor determines the default bit value of GPIO35.

Strapping Pin	Default Config	Bit Value
GPIO34	Floating	-
GPIO35	Pull-up	1
GPIO36	Floating	
GPIO37	Floating	-
GPIO38	Floating	-

Table 2-3. Default Configuration of Strapping Pins

To change the bit values, the strapping pins should be connected to external pull-up/pull-down resistors. If ESP32-P4 is used as a device by a host MCU, the voltages of strapping pins can also be controlled by the host MCU.

All strapping pins have latches. At system reset, the latches sample the bit values of their respective strapping pins and store them until the chip is powered down or shut down. The states of latches cannot be changed in any other way. It makes the strapping pin values available during the entire chip operation, and the pins are freed up to be used as regular IOs after reset.

2.4.1 Chip Boot Mode Control

After the reset is released, the combination of GPIO35 ~ GPIO38 controls the boot mode. See Table 2-4 Chip Boot Mode Control.

Boot Mode	GPIO35	GPIO36	GPIO37	GPIO38
SPI Boot mode (default)	1	X ¹	х	х
Joint Download Boot mode ²	0	1	Х	х
SPI Download Boot mode ³	0	0	0	1
Invalid Combination ⁴	0	0	1	х
	0	0	0	0

- ¹ x: values that have no effect on the result and can therefore be ignored.
- ² Joint Download Boot mode: Joint Download Boot mode supports the following download methods:
 - USB-Serial-JTAG Download Boot
 - UART Download Boot
 - SPI Slave Download Boot
 - USB 2.0 OTG Download Boot
- ³ SPI Download Boot mode: GPIO37 and GPIO38 need to be reserved only when using SPI Download Boot mode. GPIO37 and GPIO38 are floating by default and are in a high-impedance state at reset.
- ⁴ Invalid Combination: This combination can trigger unexpected behavior and should be avoided.

In SPI Boot mode, the ROM bootloader loads and executes the program from SPI flash to boot the system. SPI Boot mode can be further classified as follows:

- Normal flash Boot: supports Secure Boot. The ROM bootloader loads the program from flash into L2MEM and executes it. In most practical scenarios, this program is the 2nd stage bootloader, which later boots the target application.
- Direct Boot: does not support Secure Boot and programs run directly from flash.

In Joint Download Boot mode, users can download binary files into flash using UARTO, SPI slave, USB 2.0 OTG or USB Serial/JTAG interface. It is also possible to download binary files into L2MEM and execute it from L2MEM.

In SPI Download Boot mode, users can download binary files into flash using the SPI interface. It is also possible to download binary files into L2MEM and execute it from L2MEM.

2.4.2 ROM Messages Printing Control

During the ROM boot stage of SPI Boot mode, GPI036 and EFUSE_UART_PRINT_CONTROL jointly control the printing of ROM messages.

eFuse ¹	GPIO36	ROM Message Printing
0(0b00)	X ²	ROM messages are always printed to UARTO dur-
	ing boot	
1(0b01)	0	Print is enabled during boot
	1	Print is disabled during boot
2(0b10)	0	Print is disabled during boot
	1	Print is enabled during boot
3(0b11)	Х	Print is disabled during boot

Table 2-5. ROM Message Printing Control

¹ eFuse: EFUSE_UART_PRINT_CONTROL

² x: x indicates that the value has no effect on the result and can be ignored.

ROM message is printed to UARTO and USB Serial/JTAG Controller by default during power-on. Users can

disable the printing to USB Serial/JTAG Controller by setting the eFuse bit EFUSE_DIS_USB_SERIAL_JTAG_ROM_PRINT.

Note that if EFUSE_DIS_USB_SERIAL_JTAG_ROM_PRINT is set to 0 to print to USB, but the USB Serial/JTAG Controller has been disabled, then ROM messages will not be printed to USB Serial/JTAG Controller.

2.4.3 JTAG Signal Source Control

The strapping pin GPIO34 can be used to control the source of JTAG signals during the early boot process. This pin does not have any internal pull-up/pull-down resistors, and thus its value must be controlled by the external circuit that cannot be in a high impedance state.

As Table 2-6 shows, GPIO34 is used in combination with EFUSE_DIS_PAD_JTAG, EFUSE_DIS_USB_JTAG, and EFUSE_JTAG_SEL_ENABLE.

eFuse 1	eFuse 2	eFuse 3	GPIO34	JTAG Signal Source
		0	Ignored	USB Serial/JTAG Controller
0	0	1	0	JTAG pins MTDI, MTCK, MTMS, and MTDO
			1	USB Serial/JTAG Controller
0	1	Ignored	Ignored	JTAG pins MTDI, MTCK, MTMS, and MTDO
1	0	Ignored	Ignored	USB Serial/JTAG Controller
1	1	Ignored	Ignored	JTAG is disabled

Table 2-6. JTAG Signal Source Control

eFuse 1: EFUSE_DIS_PAD_JTAG eFuse 2: EFUSE_DIS_USB_JTAG eFuse 3: EFUSE_JTAG_SEL_ENABLE

3 Functional Description

This chapter describes the functions of ESP32-P4.

3.1 CPU and Memory

3.1.1 HP CPU

ESP32-P4 has an HP 32-bit RISC-V dual-core processor with the following features:

- five-stage pipeline that supports clock frequency of up to 400 MHz
- RV32IMAFC ISA (instruction set architecture)
- Zc extensions (Zcb, Zcmp, and Zcmt)
- custom AI and DSP extension (Xai)
- custom hardware loop instructions (Xhwlp)
- compliant with RISC-V Core Local Interrupt (CLINT)
- compliant with RISC-V Core-Local Interrupt Controller (CLIC)
- branch predictor BHT, BTB, and RAS
- up to 3 hardware breakpoints/watchpoints
- up to 16 PMP/PMA regions
- Machine and User privilege modes
- USB/JTAG for debugging
- compliant with RISC-V debug specification v0.13
- offline trace debug that is compliant with RISC-V Trace Specification v2.0

3.1.2 LP CPU

ESP32-P4 integrates an LP 32-bit RISC-V single-core processor. This LP CPU is designed as a simplified, low-power replacement of HP CPU in sleep modes. It can be also used to supplement the functions of the HP CPU in normal working mode. The LP CPU and LP memory remain powered on in Deep-sleep mode. Hence, the developer can store a program for the LP CPU in the LP memory to access LP IO, LP peripherals, and real-time timers in Deep-sleep mode.

LP CPU has the following features:

- two-stage pipeline that supports a clock frequency of up to 40 MHz
- RV32IMAC ISA (instruction set architecture)
- 32 32-bit general-purpose registers
- 32-bit multiplier and divider
- support for interrupts
- up to 2 hardware breakpoints/watchpoints

- JTAG for debugging
- compliant with RISC-V debug specification v0.13
- boot by the CPU, its dedicated timer, or LP IO

3.1.3 Processor Instruction Extensions (PIE)

The ESP32-P4 HP 32-bit RISC-V dual-core processor supports standard RV32IMAFCZc extensions, and it also contains a custom extended instruction set Xhwlp which reduces the number of instructions in the loop body to improve performance, and a custom AI and DSP extension Xai to improve operation efficiency of specific AI and DSP algorithms.

The Xai extension has the following features:

- eight 128-bit new general-purpose registers
- 128-bit vector operations, e.g., complex multiplication, addition, subtraction, multiplication, shifting, comparison, etc
- data handling instructions and load/store operation instructions combined
- aligned and unaligned 128-bit vector data load/store
- configurable rounding and saturation modes

3.1.4 Internal Memory

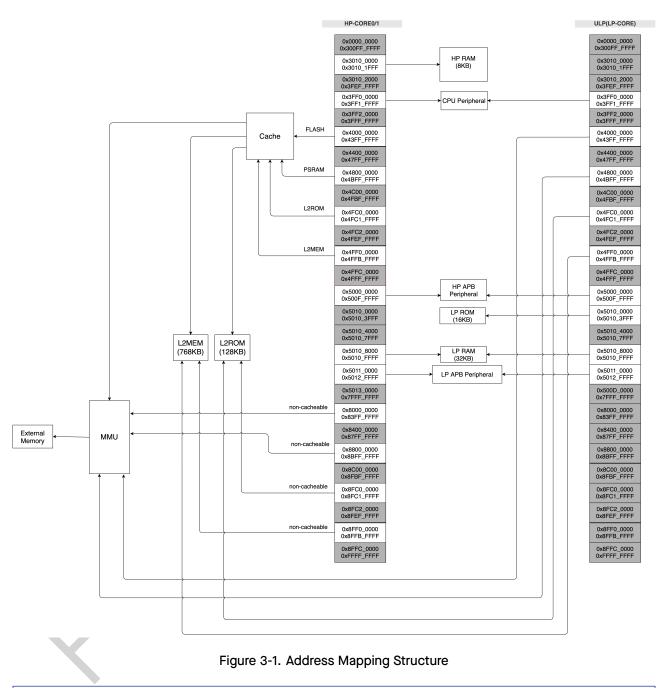
ESP32-P4's internal memory includes:

- 128 KB of HP ROM: 200 MHz, for HP CPU booting and core functions
- 768 KB of HP L2MEM: 200 MHz, for HP CPU data and instructions
- 16 KB of LP ROM: 40 MHz, for LP CPU booting and core functions
- 32 KB of LP SRAM: 40 MHz, for LP CPU data and instructions
- 4 Kbit of eFuse: 1792 bits are reserved for user data, such as encryption key and device ID
- 8 KB of TCM: 400 MHz, for HP CPU fast access

3.1.5 External Flash and SRAM

ESP32-P4 supports SPI, Dual SPI, Quad SPI, Octal SPI, QPI interfaces that allow connection to external flash; supports OPI and HPI interfaces that allow connection to external RAM.

The external flash and RAM can be mapped into the CPU instruction memory space and read-only data memory space. The external RAM can also be mapped into the CPU data memory space. ESP32-P4 supports up to 64 MB of external flash and RAM, and hardware encryption/decryption based on XTS-AES to protect users' programs and data in flash and external RAM.


Through high-speed caches, ESP32-P4 can support at a time up to:

- external flash or RAM mapped into 64 MB instruction space as individual blocks of 64 KB
- external RAM mapped into 64 MB data space as individual blocks of 64 KB. 8-bit, 16-bit, 32-bit, and 128-bit reads and writes are supported. External flash can also be mapped into 64 MB data space as individual blocks of 64 KB, supporting 8-bit, 16-bit, 32-bit, and 128-bit reads.

Note:

After ESP32-P4 is initialized, firmware can customize the mapping of external RAM or flash into the CPU address space.

3.1.6 Address Mapping Structure

Note:

The memory space with gray background is not available for use.

3.1.7 Cache

ESP32-P4 employs the two-level cache structure, which has the following features:

• 16 KB of I1 instruction cache, 64 B of block size, four-way set associative

Espressif Systems

- 64 KB of 11 data cache, 64 B of block size, two-way set associative, supporting two writing strategies write-through and write-back
- 128 KB/256 KB/512 KB of I2 cache, 64 B/128 B of block size, eight-way set associative
- cacheable and non-cacheable access
- pre-load function
- lock function
- critical word first and early restart

3.1.8 eFuse Controller

ESP32-P4 contains a 4-Kbit eFuse to store parameters, which are burned and read by an eFuse controller. The eFuse controller has the following features:

- 4 Kbits in total, with 1792 bits reserved for users, e.g., encryption key and device ID
- one-time programmable storage
- configurable write protection
- configurable read protection
- various hardware encoding schemes to protect against data corruption

3.2 System Clocks

3.2.1 CPU Clock

The CPU clock has three possible sources:

- external main crystal clock
- internal fast RC oscillator (typically about 20 MHz, and adjustable)
- 400 MHz PLL clock

The application can select the clock source from the three sources above. The selected clock source drives the CPU clock directly, or after division, depending on the application. Once the CPU is reset, the default clock source would be the external main crystal clock.

Note:

ESP32-P4 is unable to operate without an external main crystal clock.

3.2.2 RTC Clock

The RTC slow clock is used for RTC counter, RTC watchdog and low-power controller. It has four possible sources:

- XTAL32K_CLK (32 kHz): external crystal clock
- RC_SLOW_CLK (150 kHz by default): internal slow RC oscillator
- OSC_SLOW_CLK (32 kHz by default): external slow clock input through XTAL_32K_N

• RC32K_CLK (32 kHz): internal slow RC oscillator

The RTC fast clock is used for RTC peripherals and sensor controllers. It has three possible sources:

- XTAL_CLK (40 MHz): external main crystal clock
- RC_FAST_CLK (20 MHz by default): internal fast RC oscillator with adjustable frequency
- PLL_LP_CLK (8 MHz): internal PLL clock, with reference clock of XTAL32K_CLK

3.2.3 Audio PLL Clock

Audio PLL clock is a highly configurable, low-jitter and accurate clock source for audio applications, supporting frequency adjustment in the range of 6 ~ 125 MHz.

3.3 Analog Peripherals

3.3.1 Analog-to-Digital Converter (ADC)

ESP32-P4 integrates two 12-bit SAR ADCs which support measurements on 14 channels (analog-enabled pins).

For GPIOs assigned to ADC, please refer to Table 3-3.

3.3.2 Temperature Sensor

The temperature sensor generates a voltage that varies with temperature. The voltage is internally converted via an ADC into a digital value.

The temperature sensor has a range of –40 °C to 125 °C. It is designed primarily to sense the temperature changes inside the chip. The temperature value depends on factors like microcontroller clock frequency or I/O load. Generally, the chip's internal temperature is higher than the ambient temperature.

3.3.3 Touch Sensor

ESP32-P4 has 14 capacitive-sensing GPIOs, which detect variations induced by touching or approaching the GPIOs with a finger or other objects. The low-noise nature of the design and the high sensitivity of the circuit allow relatively small pads to be used. Arrays of pads can also be used, so that a larger area or more points can be detected. The touch sensing performance can be further enhanced by the waterproof design, detection of frequency hopping, and digital filtering feature.

For GPIOs assigned to the touch sensor, please refer to Table 3-3.

3.3.4 Analog Voltage Comparator

ESP32-P4 provides two groups of analog voltage comparators, and each group contains two PADs. This peripheral can be used to compare the voltages of the two PADs or compare the voltage of one PAD with a stable internal voltage that can be adjustable.

3.3.5 Brown-out Detector

With the Brown-out detector, ESP32-P4 can monitor voltages of power supply pins and trigger an interrupt or reset when voltages are abnormal.

3.3.6 Analog I2C Host

This module is a dedicated I2C host that communicates with some analog or RF modules to configure parameters of these modules. Each configurable module has an I2C slave with its own address.

3.4 Digital Peripherals

3.4.1 General Purpose Input/Output Interface (GPIO)

ESP32-P4 has 55 GPIO pins which can be assigned various functions by configuring corresponding registers. Besides digital signals, some GPIOs can be also used for analog functions, such as ADC.

All GPIOs have selectable internal pull-up or pull-down, or can be set to high impedance. When these GPIOs are configured as an input, the input value can be read by software through the register. Input GPIOs can also be set to generate edge-triggered or level-triggered CPU interrupts. All digital IO pins are bi-directional, non-inverting and tristate, including input and output buffers with tristate control. These pins can be multiplexed with other functions, such as the UART, SPI, etc. For low-power operations, the GPIOs can be set to holding state.

The IO MUX and the GPIO matrix are used to route signals from peripherals to GPIO pins. Together they provide highly configurable I/O. Using GPIO Matrix, peripheral input signals can be configured from any IO pins while peripheral output signals can be configured to any IO pins.

ESP32-P4 includes HP and LP systems, and thus it has IO MUXs and the GPIO matrices for the HP system and the LP system. GPIOO ~ GPIO15 can be configured to be controlled by the HP system or the LP system. By default, these pins are controlled by the HP system.

Table 3-1 shows the LP IO MUX functions of each pin, and Table 3-2 shows the HP IO MUX functions of each pin.

Name	No.	Function 0	Function 1	
GPIOO	1	LPGPIOO	LPGPIOO	
GPI01	2	LPGPI01	LPGPI01	
GPIO2	3	LPGPI02	LPGPI02	
GPI03	4	LPGPI03	LPGPI03	
GPIO4	5	LPGPI04	LPGPI04	
GPI05	6	LPGPI05	LPGPI05	
GPI06	7	LPGPI06	LPGPI06	
GPI07	8	LPGPI07	LPGPI07	
GPIO8	9	LPGPI08	LPGPI08	
GPIO9	11	LPGPI09	LPGPI09	
GPIO10	12	LPGPI010	LPGPI010	
GPIO11	13	LPGPI011	LPGPI011	
GPI012	14	LPGPI012	LPGPI012	
GPIO13	15	LPGPI013	LPGPI013	
GPIO14	16	LPUTXD	LPGPI014	
GPI015	17	LPURTD	LPGPI015	

Table 3-1. LP IO MUX Pin Functions

Name	No.	Function 0	Function 1	Function 2	Function 3	Reset	Notes
GPIOO	1	HPGPIOO	HPGPIOO	-	-	0	R
GPI01	2	HPGPI01	HPGPI01	-	-	0	R
GPIO2	3	MTCK	HPGPIO2	-	-	1*	R
GPIO3	4	MTDI	HPGPI03	-	-	1	R
GPIO4	5	MTMS	HPGPI04	-	-	1	R
GPI05	6	MTDO	HPGPI05	-	-	1	R
GPI06	7	HPGPI06	HPGPI06	-	SPI2HD	0	R
GPI07	8	HPGPI07	HPGPI07	-	SPI2CS	0	R
GPI08	9	HPGPI08	HPGPI08	UORTS	SPI2D	0	R
GPI09	11	HPGPI09	HPGPI09	UOCTS	SPI2CK	0	R
GPI010	12	HPGPI010	HPGPI010	U1TXD	SPI2Q	0	R
GPI011	13	HPGPI011	HPGPI011	U1RXD	SPI2WP	0	R
GPI012	14	HPGPI012	HPGPI012	U1RTS		0	R
GPI013	15	HPGPI013	HPGPI013	U1CTS		0	R
GPI014	16	HPGPI014	HPGPI014	_	-	0	R
GPI015	17	HPGPI015	HPGPI015		-	0	R
GPI016	18	HPGPI016	HPGPI016		-	0	R
GPI017	19	HPGPI017	HPGPI017		-	0	R
GPIO18	20	HPGPI018	HPGPI018		-	0	R
GPI019	21	HPGPI019	HPGPI019		-	0	R
GPIO20	23	HPGPI020	HPGPI020		-	0	R
GPIO21	24	HPGPIO21	HPGPIO21	—	-	0	R
GPI022	25	HPGPI022	HPGPI022	_	-	0	R
GPIO23	26	HPGPI023	HPGPI023	_	REF50M	0	R
GPIO24	53	HPGPIO24	HPGPIO24		-	0	R, USB
GPIO25	54	HPGPI025	HPGPI025		-	3*	R, USB
GPIO26	56	HPGPIO26	HPGPIO26		-	0	R
GPIO27	57	HPGPI027	HPGPIO27		-	0	R
GPIO28	58	HPGPIO28	HPGPIO28	SPI2CS	RMII_RXDV	0	
GPIO29	59	HPGPI029	HPGPI029	SPI2D	RMII_RXDO	0	
GPIO30	61	HPGPI030	HPGPI030	SPI2CK	RMII_RXD1	0	
GPIO31	62	HPGPIO31	HPGPIO31	SPI2Q	RMII_RXER	0	
GPI032	64	HPGPI032	HPGPI032	SPI2HD	RMII_CLK	0	
GPIO33	65	HPGPI033	HPGPI033	SPI2WP	RMII_TXEN	0	
GPIO34	66	HPGPIO34	HPGPIO34	SPI2D4	RMII_TXD0	0	
GPIO35	67	HPGPI035	HPGPI035	SPI2D5	RMII_TXD1	0	
GPIO36	69	HPGPI036	HPGPI036	SPI2D6	RMII_TXER	0	
GPIO37	70	UOTXD	HPGPI037	SPI2D7	-	5	
GPIO38	71	UORXD	HPGPI038	SPI2DQS	-	0	
GPIO39	81	SD1_DO	HPGPI039		REF50M	0	
GPIO40	82	SD1_D1	HPGPI040		RMII_TXEN	0	

Table 3-2. HP IO MUX Pin Functions

Name	No.	Function 0	Function 1	Function 2	Function 3	Reset	Notes
GPIO41	83	SD1_D2	HPGPI041		RMII_TXD0	0	
GPIO42	84	SD1_D3	HPGPI042		RMII_TXD1	0	
GPIO43	85	SD1_CK	HPGPIO43		RMII_TXER	0	
GPIO44	87	SD1_CMD	HPGPIO44		RMII_CLK	0	
GPIO45	88	SD1_D4	HPGPI045		RMII_RXDV	0	
GPIO46	89	SD1_D5	HPGPIO46		RMII_RXDO	0	
GPIO47	90	SD1_D6	HPGPI047		RMII_RXD1	0	—
GPIO48	91	SD1_D7	HPGPIO48		RMII_RXER	0	-
GPIO49	93	HPGPI049	HPGPI049		RMII_TXEN	0	R
GPI050	94	HPGPI050	HPGPI050		RMII_CLK	0	R
GPI051	95	HPGPI051	HPGPI051		RMII_RXDV	0	R
GPI052	96	HPGPI052	HPGPI052		RMII_RXDO	0	R
GPI053	98	HPGPI053	HPGPI053		RMII_RXD1	0	R
GPI054	99	HPGPI054	HPGPI054		RMII_RXER	0	R

Table 3-2 – cont'd from previous page

Reset

The default configuration of each pin after reset:

- 0 input disabled, in high impedance state (IE = 0)
- 1 input enabled, in high impedance state (IE = 1)
- 1* When the value of eFuse bit EFUSE_DIS_PAD_JTAG is
 0 (default), input enabled, pull-up resistor enabled (IE = 1, WPU = 1)
 1, input disabled, in high impedance state (IE = 0)
- 3* input enabled, pull-up resistor enabled (IE = 1, WPU = 0, USB_WPU = 1). See details in Notes.
- 5 input disabled. Output is controlled by the peripheral of Function 0, and the default output is 1.

We recommend pulling high or low GPIO pins in high impedance state to avoid unnecessary power consumption. You may add pull-up and pull-down resistors in your PCB design, or enable internal pull-up and pull-down resistors during software initialization.

GPIO Input Mode

The input function of GPIO can be configured as hysteresis or normal mode:

- Hysteresis mode: In the hysteresis mode, the threshold voltage for flipping between high and low levels of GPIO input depends on the direction of level flipping. Specifically, the voltage threshold for flipping from high to low level is slightly lower than the voltage threshold for flipping from low to high level.
- Normal mode: The threshold voltage for flipping between high and low levels of GPIO input is independent of the direction of level flipping. In other words, the voltage threshold for flipping from high to low level is the same as the voltage threshold for flipping from low to high level.

Notes

• R - These pins have analog functions.

• USB - The pull-up value of a USB pin is controlled by the pin's pull-up value together with the USB pull-up value. If any of the two pull-up values is 1, the pin's pull-up resistor will be enabled.

3.4.2 JPEG Codec

ESP32-P4 contains a baseline JPEG codec that can be configured as a JPEG encoder or a JPEG decoder.

When configured as a JPEG encoder, it supports the following features:

- 8-bit color sampling
- original image formats: RGB888, RGB565, YUV422, and GRAY
- to-be compressed image formats: YUV444, YUV422 and YUV420, i.e. color space conversion from RGB to YUV for original images
- configurable quantization parameters
- still image encoding with a resolution up to 4K
- maximum MJPEG encoding performance of 720p@88fps or 1080p@34fps (excluding header transfer time)

When configured as a JPEG decoder, it has the following features:

- 8-bit color sampling
- compressed image formats: YUV444, YUV422, and YUV420
- four 8-bit or 16-bit precision quantization tables (determined by the quantization table transmitted in the header)
- two DC and two AC Huffman encoding tables (determined by the Huffman encoding table transmitted by the header)
- compressed images with resolutions that are multiples of 8
- still image decoding with a resolution of up to 4K
- maximum MJPEG decoding performance of 720p@88fps or 1080p@30fps (excluding header decoding time)

3.4.3 Pixel-Processing Accelerator

ESP32-P4 includes a pixel-processing accelerator (PPA) with scaling-rotation-mirror (SRM) and image blending (BLEND) functionalities.

- SRM enables image rotation, scaling, and mirroring, supporting
 - input formats: ARGB8888, RGB888, RGB565, and YUV420
 - output formats: ARGB8888, RGB888, RGB565, and YUV420
 - counterclockwise rotation: 90°, 180°, 270°
 - horizontal and vertical scaling with scaling factors of 8-bit integer part and 4-bit fractional part
 - horizontal and vertical mirroring

- BLEND enables blending of two layers of the same size, supporting
 - input formats: ARGB8888, RGB888, RGB565, L4, L8, A4, and A8
 - output formats: ARGB8888, RGB888, and RGB565
 - layer blending based on the Alpha channel. The Alpha channel can be provided by register configuration if layers do not contain such information
 - special color filtering by setting color-key ranges of foreground and background layers

3.4.4 Image Signal Processor

ESP32-P4 includes an image signal processor (ISP), which supports the following features:

- maximum resolution: 1920 x 1080
- three input channels: MIPI CSI, DVP, and DW-GDMA
- input formats: RAW8, RAW10, and RAW12
- output formats: RAW8, RGB888, RGB565, YUV422, and YUV420
- pipeline structures: Bayer Filter (BF), Lens Shading Correction (LSC), Demosaic, Color Correction Matrix (CCM), Gamma Correction, Edge, Contrast/Hue/Saturation/Brightness, Automatic Exposure (AE), Automatic Focus (AF), Automatic White Balance (AWB), and Histogram Statistics (HIST)

3.4.5 H264 Encoder

ESP32-P4 contains a baseline H264 encoder, which has the following features:

- YUV420 progressive video with the maximum encoding performance of 1920×1088@24fps
- I-frame and P-frame
- GOP mode and dual-stream mode (in dual-stream mode, the total bandwidth of the two video image sequences to be encoded should not exceed 1920×1088@24fps)
- intra luma macroblock of 4 x 4 and 16 x 16 partitioning
- all 9 prediction modes for 4 x 4 partitioning and all 4 prediction modes for 16 x 16 partitioning of intra luma macroblock
- all 4 prediction modes for intra chroma macroblock
- all partition modes of inter prediction macroblock: 4 x 4, 4 x 8, 8 x 4, 8 x 8, 8 x 16, 16 x 8, and 16 x 16
- motion estimation with the precision of 1/2 and 1/4 pixel
- search range of inter prediction horizontal motion being [-29.75, +16.75], vertical search range being [- 13.75, +13.75]
- enabling and disabling deblocking filter
- context adaptive variable length coding (CAVLC)
- P-skip macroblock
- P slice supporting I macroblock
- decimate operation of luma and chroma component quantization results

- fixed QP and rate control at the macroblock level
- MV merge for outputting the MV of each macroblock to memory
- Region of interest (ROI). It can configure up to 8 rectangular ROI areas at any position. These ROI areas have fixed priorities and can be overlapped with each other. Each ROI area can be assigned with a fixed QP or QP offset, and a non-ROI area can be specified with a QP offset.

3.4.6 Serial Peripheral Interface (SPI)

ESP32-P4 features four SPI interfaces, i.e. flash SPI, PSRAM SPI, SPI2, and SPI3. Flash SPI and PSRAM SPI can be configured to operate in SPI memory mode, while SPI2 and SPI3 can be configured to operate in general-purpose SPI mode.

• SPI memory mode

In SPI memory mode, flash SPI and PSRAM SPI interfaces connect with in-package/out-package NOR flash and PSRAM respectively, which are used as the external memory of CPU. Data is transferred in bytes. Flash SPI supports up to four-line SDR reads and writes, while PSRAM SPI supports up to sixteen-line DDR reads and writes. The clock frequency is configurable. Flash SPI supports up to a maximum of 120 MHz in SDR mode, while PSRAM SPI supports up to a maximum of 250 MHz in DDR mode.

• General-purpose SPI (GP-SPI) mode

When SPI2 and SPI3 act as general-purpose SPIs, they can operate in master and slave modes. SPI2 and SPI3 support two-line full-duplex communication and single-/two-/four-line half-duplex communication in both master and slave modes. In addition, SPI2 supports eight-line communication. The host's clock frequency is configurable. Data is transferred in bytes. The clock polarity (CPOL) and phase (CPHA) are also configurable. SPI2 and SPI3 interfaces can be connected to PDMA.

- In master mode, the clock frequency is 80 MHz at most, and the four modes of SPI transfer format are supported.
- In slave mode, the clock frequency is 60 MHz at most, and the four modes of SPI transfer format are also supported.

For GPIOs assigned to SPI, please refer to Table 3-3.

3.4.7 LP SPI Interface

ESP32-P4 includes an LP SPI interface, which is a low-speed SPI interface. The LP SPI interface has the following features:

- configurable to operate in master or slave mode
- two-line full-duplex communication and single-/two-line half-duplex communication in both master and slave modes
- one CS line in master mode
- host's clock frequency is configurable in master mode
- data is transferred in bytes
- configurable clock polarity (CPOL) and phase (CPHA)

• wakeup on start bit and predefined sequence detection in slave mode

For GPIOs assigned to LP SPI Interface, please refer to Table 3-3.

3.4.8 Universal Asynchronous Receiver Transmitter (UART)

ESP32-P4 has five UART interfaces, UARTO ~ 4, which provide hardware flow control (CTS and RTS signals) and software flow control (XON and XOFF).

UARTO ~ 4 support asynchronous communication (RS232 and RS485) and IrDA at a speed of up to 5 Mbps. UARTO ~ 4 interfaces are connected to GDMA via the common UHCIO (the common master control interface), and can be accessed by the GDMA controller or directly by the CPU.

For GPIOs assigned to UART, please refer to Table 3-3.

3.4.9 LP UART Interface

ESP32-P4 has one LP UART interface, which provides hardware flow control (CTS and RTS signals) and software flow control (XON and XOFF).

LP UART only supports asynchronous communication (RS232) at a speed of up to 1.25 Mbps.

For GPIOs assigned to LP UART Interface, please refer to Table 3-3.

3.4.10 I3C Interface

ESP32-P4 includes one I3C master interface and one I3C slave interface. The I3C master interface supports the following features:

- compliant with I3C protocol
- compatible with I2C mode (FM, FM+
- SDR mode
- dynamic address allocation
- In-Band interrupts
- DMA transfer

The I3C slave interface supports the following features:

- limited compatible with I2C mode
- SDR mode
- programmable static addresses
- dynamic address allocation
- multiple Common Command Codes (CCC)
- In-Band interrupts

For GPIOs assigned to I3C Interface, please refer to Table 3-3.

3.4.11 I2C Interface

ESP32-P4 has two I2C bus interfaces which are used for I2C master mode or slave mode, depending on the user's configuration. The I2C interfaces support:

- standard mode (100 Kbit/s)
- fast mode (400 Kbit/s)
- up to 800 Kbit/s (constrained by SCL and SDA pull-up strength)
- 7-bit and 10-bit addressing mode
- double addressing mode
- 7-bit broadcast address

Users can configure instruction registers to control the I2C interfaces for more flexibility.

For GPIOs assigned to I2S Interface, please refer to Table 3-3.

3.4.12 LP I2C Interface

ESP32-P4 has one LP I2C bus interface which can only be used for the master mode. The LP I2C interface supports:

- standard mode (100 Kbit/s)
- fast mode (400 Kbit/s)
- up to 800 Kbit/s (constrained by SCL and SDA pull-up strength)
- 7-bit and 10-bit addressing mode
- double addressing mode
- 7-bit broadcast address

Users can configure instruction registers to control the LP I2C interface for more flexibility.

For GPIOs assigned to LP I2C Interface, please refer to Table 3-3.

3.4.13 I2S Interface

ESP32-P4 includes three standard I2S interfaces. These interfaces can operate as a master or a slave in full-duplex or half-duplex mode, and can be configured for 8-bit, 16-bit, 24-bit, or 32-bit serial communication. BCK clock frequency, from 10 kHz up to 40 MHz, is supported.

The I2S interfaces support TDM PCM, TDM MSB alignment, TDM standard, and PDM interface. They connect to the GDMA controller. Among these three I2S interfaces, I2SO supports PDM-PCM input and PCM-PDM output.

For GPIOs assigned to I2S Interface, please refer to Table 3-3.

3.4.14 LP I2S Interface

ESP32-P4 includes an LP I2S RX interface, which connects with internal memory and can be configured for voice activity detection (VAD). LP I2S RX interface has the following features:

• slave mode only

Espressif Systems

- I2S serial 16-bit data collection mode
- BCK clock in the range from 10 kHz to 5 MHz
- TDM PCM and TDM MSB alignment, TDM standard, and PDM RX interface

For GPIOs assigned to LP I2S Interface, please refer to Table 3-3.

3.4.15 Remote Control Peripheral

The Remote Control Peripheral (RMT) supports four channels of infrared remote transmission and four channels of infrared remote reception. By controlling pulse waveform through software, it supports various infrared and other single wire protocols. All eight channels share a 384 × 32-bit memory block to store transmit or receive waveform. There are one transmit channel and one receive channel that support DMA access.

For GPIOs assigned to RMT, please refer to Table 3-3.

3.4.16 LED PWM Controller

The LED PWM controller can generate independent digital waveform on eight channels. The LED PWM controller supports:

- generating digital waveform with configurable periods and duty cycle. The resolution of duty cycle can be up to 20 bits
- multiple clock sources, including 80 MHz PLL clock, external main crystal clock, and internal fast RC oscillator
- operation when the CPU is in Light-sleep mode
- gradual increase or decrease of duty cycle, which is useful for the LED RGB color-gradient generator
- up to 16 duty cycle ranges for gamma curve generation, each can be independently configured in terms of duty cycle direction (increase or decrease), step size, the number of steps, and step frequency

For GPIOs assigned to LED PWM, please refer to Table 3-3.

3.4.17 Motor Control PWM (MCPWM)

ESP32-P4 integrates two MCPWMs that can be used to drive digital motors and smart light. Every MCPWM has a clock divider (prescaler), three PWM timers, three PWM operators, and a dedicated capture submodule.

PWM timers are used to generate timing references. The PWM operators generate desired waveform based on the timing references. By configuration, a PWM operator can use the timing reference of any PWM timer, and use the same timing reference with other PwM operators. PWM operators can also use different PWM timers' values to produce independent PWM signals. PWM timers can be synchronized.

For GPIOs assigned to MCPWM, please refer to Table 3-3.

3.4.18 Pulse Count Controller (PCNT)

The pulse count controller (PCNT) in ESP32-P4 captures pulses and counts pulse edges in seven modes. It has the following features:

- four independent pulse counters (units) that count from 1 to 65535
- each unit consists of two independent channels sharing one pulse counter
- all channels have input pulse signals (e.g. sig_ch0_un) with their corresponding control signals (e.g. ctrl_ch0_un)
- independently filter glitches of input pulse signals (sig_ch0_un and sig_ch1_un) and control signals (ctrl_ch0_un and ctrl_ch1_un) on each unit
- each channel has the following parameters:
 - 1. selection between counting on positive or negative edges of the input pulse signal
 - 2. configuration to Increment, Decrement, or Disable counter mode for control signal's high and low states
- can be reset by inputting signals from pins
- pulse frequency up to 40 MHz

For GPIOs assigned to PCNT, please refer to Table 3-3.

3.4.19 TWAI[®] Controller

ESP32-P4 has one TWAI® controller with the following features:

- compatible with ISO 11898-1 protocol (CAN Specification 2.0)
- standard frame format (11-bit ID) and extended frame format (29-bit ID)
- bit rates from 1 Kbit/s to 1 Mbit/s
- multiple modes of operation: Normal, Listen Only, and Self-Test (no acknowledgment required)
- 64-byte receive FIFO
- acceptance filter (single and dual filter modes)
- error detection and handling: error counters, configurable error interrupt threshold, error code capture, arbitration lost capture, and the automatic stand-by mode of the transceiver
- receiving timestamp of data frames

For GPIOs assigned to TWAI®, please refer to Table 3-3.

3.4.20 USB 2.0 OTG Full-Speed Interface

ESP32-P4 features a full-speed USB OTG interface along with an integrated transceiver. The USB OTG interface complies with the USB 2.0 specification. It has the following features:

General Features

- full-speed and low-speed data rates
- HNP and SRP as A-device or B-device
- dynamic FIFO (DFIFO) sizing up to 1 KB
- multiple memory access modes
 - Scatter/Gather DMA mode

- Buffer DMA mode
- two integrated full-speed transceivers
- choosing from two integrated transceivers GPI024/GPI025 and GPI026/GPI027
- supporting USB 2.0 OTG using one of the integrated transceivers while USB Serial/JTAG using the other one

Device Mode Features

- Endpoint O always existing (bi-directional, consisting of EPO IN and EPO OUT)
- six additional endpoints (Endpoint 1 ~ 6), configurable as IN or OUT
- maximum of five IN endpoints concurrently active at any time (including EPO IN)
- all OUT endpoints share a single RX FIFO
- each IN endpoint has a dedicated TX FIFO

Host Mode Features

- 8 channels
 - a control channel consists of two channels (IN and OUT), as IN and OUT transactions must be handled separately. Only the Control transfer type is supported.
 - each of the other seven channels is dynamically configurable to be IN or OUT, and supports Bulk, Isochronous, and Interrupt transfer types.
- All channels share an RX FIFO, non-periodic TX FIFO, and periodic TX FIFO. The size of each FIFO is configurable.

For GPIOs assigned to USB 2.0 OTG Full-Speed Interface, please refer to Table 3-3.

3.4.21 USB 2.0 OTG High-Speed Interface

ESP32-P4 features a high-speed USB OTG interface along with an integrated transceiver. The USB OTG interface complies with the USB 2.0 specification. It has the following features:

General Features

- compatible with USB 2.0, OTG 1.3, and OTG 2.0
- high-speed and full-speed data rates
- support Dual-role-devices (DRD), i.e. it can be used both as host and device
- dynamic FIFO (DFIFO) sizing up to 4 KB
- multiple memory access modes
 - Scatter/Gather DMA mode
 - Buffer DMA mode
- integrated UTMI high-speed transceiver
- remote wake-up

Device Mode Features

- Endpoint 0 always existing (bi-directional, consisting of EPO IN and EPO OUT)
- 15 additional endpoints (Endpoint 1 ~ 15), configurable as IN or OUT
- maximum of eight IN endpoints concurrently active at any time (including EPO IN)
- all OUT endpoints share a single RX FIFO
- each IN endpoint has a dedicated TX FIFO

Host Mode Features

- 16 channels
 - a control channel consists of two channels (IN and OUT), as IN and OUT transactions must be handled separately. Only the Control transfer type is supported.
 - each of the other 15 channels is dynamically configurable to be IN or OUT, and supports Bulk, Isochronous, and Interrupt transfer types.
- all channels share an RX FIFO, non-periodic TX FIFO, and periodic TX FIFO. The size of each FIFO is configurable.

For GPIOs assigned to USB 2.0 OTG High-Speed Interface, please refer to Table 3-3.

3.4.22 USB Serial/JTAG Controller

ESP32-P4 integrates a USB Serial/JTAG controller. This controller has the following features:

- USB 2.0 full speed compliant, capable of up to 12 Mbit/s transfer speed (Note that this controller does not support the faster 480 Mbit/s high-speed transfer mode)
- CDC-ACM virtual serial port and JTAG adapter functionality
- programming the chip's flash
- CPU debugging with compact JTAG instructions
- a full-speed USB PHY integrated in the chip
- two integrated full-speed transceivers
- choosing from two full-speed integrated transceivers GPI024/GPI025 and GPI026/GPI027
- supporting USB 2.0 OTG using one of the integrated transceivers while USB Serial/JTAG using the other one

For GPIOs assigned to USB Serial/JTAG Controller, please refer to Table 3-3.

3.4.23 Ethernet MAC

Ethernet MAC controller on ESP32-P4 transfers data in compliance with the standard IEEE802.3-2008. It supports the following features:

- data transfer through MII or RMII interface
- reading and writing PHY register through MDIO interface
- IEEE1588-2002 and IEEE1588-2008
- Energy-Efficient Ethernet (EEE)

- Magic Packet Detection
- Remote Wake-up Frame Detection
- full-duplex and half-duplex communication
- built-in DMA transferring data with linked lists

For GPIOs assigned to Ethernet MAC, please refer to Table 3-3.

3.4.24 SD/MMC Host Controller

ESP32-P4 has an SD/MMC Host Controller with the following features:

- Secure Digital (SD) memory version 3.0 and version 3.01
- Secure Digital I/O (SDIO) version 3.0
- Consumer Electronics Advanced Transport Architecture (CE-ATA) version 1.1
- Multimedia Cards (MMC version 4.41, eMMC version 4.5 and version 4.51)
- up to 80 MHz clock output
- three data bus modes:
 - 1-bit
 - 4-bit (supports two SD/SDIO/MMC 4.41 cards, and one SD card operating at 1.8 V in 4-bit mode)
 - 8-bit

For GPIOs assigned to SD/MMC Host Controller, please refer to Table 3-3.

3.4.25 MIPI CSI Interface

ESP32-P4 includes one MIPI CSI interface for connecting cameras of the MIPI interface. MIPI CSI interface supports the following features:

- compliant with MIPI CSI-2
- compliant with DPHY v1.1
- 2-lane x 1.5 Gbps
- input formats: RGB888, RGB666, RGB565, YUV422, YUV420, RAW8, RAW10, and RAW12

For GPIOs assigned to MIPI CSI, please refer to Table 3-3.

3.4.26 MIPI DSI Interface

ESP32-P4 features a MIPI DSI interface for connecting displays of the MIPI interface. The MIPI DSI interface has the following features:

- compliant with MIPI DSI
- compliant with DPHY v1.1
- 2-lane x 1.5 Gbps
- input formats: RGB888, RGB666, RGB565, and YUV422

- output formats: RGB888, RGB666, and RGB565
- using the video mode to output video stream
- outputting image patterns

For GPIOs assigned to MIPI DSI, please refer to Table 3-3.

3.4.27 LCD Interface

ESP32-P4 supports 8-bit ~ 24-bit parallel RGB, I8080, and MOTO6800 interfaces. These interfaces operate at 40 MHz or lower, and support conversion among RGB565, YUV422, YUV420, and YUV411.

For GPIOs assigned to LCD Interface, please refer to Table 3-3.

3.4.28 CAM Interface

ESP32-P4 supports an 8-bit ~ 16-bit DVP image sensor, with clock frequency of up to 40 MHz. The camera interface supports conversion among RGB565, YUV422, YUV420, and YUV411.

For GPIOs assigned to CAM Interface, please refer to Table 3-3.

3.4.29 General DMA Controller

ESP32-P4 is equipped with two types of general DMAs (GDMAs) with different direct access buses, AHB and AXI. They are referred to as GDMA-AHB and GDMA-AXI. They have the following features:

- GDMA-AHB and GDMA-AXI both have 6 channels, with 3 transmit channels and 3 receive channels
- a peripheral can be mapped and bounded to any channel of GDMA
- arbitration way among channels is configurable, supporting both fixed priority arbiter and weight arbiter
- GDMA-AHB and GDMA-AXI employ linked lists to control data transfer. GDMA-AHB is limited to accessing in-package memory (SRAM and LP_MEM), while GDMA-AXI can access both in-package and out-package memory (PSRAM). They both support peripheral-to-memory and memory-to-memory data transfer at a high speed
- GDMA-AHB and GDMA-AXI both support unaligned address access
- GDMA-AHB supports I3C, UHCI, I2S, ADC, and RMT
- GDMA-AXI supports LCD, CAM, GP-SPI, PARLIO, AES, and SHA

3.4.30 DW-GDMA Controller

DW-GDMA controller on ESP32-P4 can realize memory-to-memory, peripheral-to-memory, and memory-to-peripheral data transfer, supporting the following features:

- two AXI master interfaces
- four channels
- hardware handshake with CSI, DSI, and ISP
- flow control using DMA or peripherals
- data transfer with unaligned starting addresses

- suspend, resume, and abort of channel transfer
- arbitration priority among channels being configured by registers
- single-block transfer
- multi-block with continuous addressing, automatic reloading register configuration, shadow registers, and linked lists

3.4.31 2D-DMA Controller

2D-DMA controller on ESP32-P4 is dedicated for processing 2D images, supporting the following features:

- one AXI master interface
- data transfer with unaligned starting addresses
- memory-to-memory, peripheral-to-memory (TX), and memory-to-peripheral (RX) data transfer
- three memory-to-peripheral channels, two peripheral-to-memory channels
- communication with PPA and JPEG Codec
- configurable channel priority and weight
- flexible macroblock ordering
- color format conversion

3.4.32 Bit-Scrambler

The Bit-Scrambler controller includes transmit and receive channels, located in the transmit and receive paths of GDMA, respectively. The Bit-Scrambler controller can be used for endianness conversion, adding/deleting data, formatting data stream, etc. In addition, lookup tables can be used to implement functionalities such as generating complex waveforms, ADC curve correction, etc.

Its transmit and receive channels can work independently. Each channel supports six instructions and contains the instruction cache with a depth of eight and a 2048-byte lookup table. The six instructions can be programmable by users, and the controller processes the data stream in bits according to a user-defined instruction sequence.

3.4.33 SoC Event Task Matrix (ETM)

ESP32-P4 integrates an SOC ETM with multiple channels. Each input event on channels is mapped to an output task. Events are generated by peripherals, while tasks are received by peripherals. The SOC ETM has the following features:

- up to 50 mapping channels, each connected to an event and a task and controlled independently
- an event or a task can be mapped to any tasks or events in the matrix. That is to say, one event can be mapped to different tasks via multiple channels, or different events can be mapped to the same task via their individual channels
- peripherals supporting ETM include GPIO, LED PWM, general-purpose timers, RTC Watchdog Timer, system timer, MCPWM, temperature sensor, ADC, I2S, GDMA, 2D-DMA, and PMU

3.4.34 Parallel IO (PARLIO) Controller

ESP32-P4 contains a Parallel IO controller (PARLIO) for transmitting and receiving parallel data up to 16-bit. It connects to the GDMA controller and includes two modules, one transmit module and one receive module. It has the following features:

- receive/transmit module supporting multiple clock sources of up to 40 MHz and clock division
- receiving/transmitting 1/2/4/8/16-bit data
- receive module supporting multiple data collection modes

For GPIOs assigned to PARLIO, please refer to Table 3-3.

3.4.35 LP Mailbox

ESP32-P4 includes an LP Mailbox that provides 16 groups of 32-bit messages. A write operation to any of the 16 groups of messages can trigger LP and HP interrupts.

3.5 Low-Power Management

With advanced power-management technologies, ESP32-P4 can switch between different power modes.

- Active mode: CPU and all peripherals are powered on.
- Light-sleep mode: CPU is paused. Any wake-up events (host, RTC timer, or external interrupts) will wake up the chip. CPU (excluding L2MEM) and most peripherals (See <u>ESP32-P4 Block Diagram</u>) can also be powered down based on requirements to further reduce power consumption.
- Deep-sleep mode: CPU (including L2MEM) and most peripherals (See <u>ESP32-P4 Block Diagram</u>) are powered down. Only the LP memory is powered on, and some peripherals of the LP system can be powered down based on requirements.

3.6 Timers and Watchdogs

3.6.1 General Purpose Timers

ESP32-P4 is embedded with four 54-bit general-purpose timers, which are based on 16-bit prescalers and 54-bit auto-reload-capable up/down-timers.

The timers' features are summarized as follows:

- a 16-bit clock prescaler, from 2 to 65536
- a 54-bit time-base counter programmable to be incrementing or decrementing
- able to read real-time values of the time-base counter
- halting and resuming the time-base counter
- programmable alarm generation
- level interrupt generation
- events that output real-time alarms

• tasks that respond to ETM inputs, including starting/stopping timers, starting alarms, reading real-time values of timers, and reloading values of timers

3.6.2 System Timer

ESP32-P4 integrates a 52-bit system timer, which has two 52-bit counters and three comparators. The system timer has the following features:

- counters with a fixed clock frequency of 16 MHz
- three types of independent interrupts can be generated according to the alarm value
- two alarm modes: target mode and period mode
- 52-bit target alarm value and 26-bit periodic alarm value
- automatic reload of the counter value
- counters can be stalled if CPU is stalled or in OCD mode
- events that output real-time alarms

3.6.3 Watchdog Timers

ESP32-P4 contains three watchdog timers: one in each of the two timer groups (called Main System Watchdog Timers, or MWDT) and one in the RTC module (called the RTC Watchdog Timer, or RWDT).

During the flash boot process, RWDT and the MWDT in timer group 0 (TIMGO) are enabled automatically in order to detect and recover from booting errors.

Watchdog timers have the following features:

- four stages, each with a programmable timeout value. Each stage can be configured, enabled and disabled separately
- interrupt, CPU reset, or core reset for MWDT upon expiry of each stage; interrupt, CPU reset, core reset, or system reset for RWDT upon expiry of each stage
- 32-bit expiry counter
- write protection, to prevent RWDT and MWDT configuration from being altered inadvertently
- flash boot protection

If the boot process from an SPI flash does not complete within a predetermined period of time, the watchdog will reboot the entire main system.

3.6.4 LP General Purpose Timer

ESP32-P4 includes a 48-bit LP timer, which consists of one 48-bit counter and two alarm comparators. It has the following features:

- frequency of the counter is always same as that of RC_DYN_SLOW_CLK
- two alarm comparators can generate two independent interrupts based on different alarm values
- 48-bit one-time specific alarm value
- reading the counter value when CPU stalls, XTAL40M_CLK switches or system resets

3.6.5 Super Watchdog Timer

ESP32-P4 integrates an analog super watchdog timer. The analog super watchdog timer can trigger a reset of the digital system in the event of an abnormality in the digital system that cannot be self-detected.

3.7 Cryptography/Security Components

3.7.1 AES Accelerator (AES)

ESP32-P4 integrates an Advanced Encryption Standard (AES) accelerator, which is a hardware device that speeds up computation using AES algorithm significantly, compared to AES algorithms implemented solely in software. The AES accelerator integrated in ESP32-P4 has two working modes, which are Typical AES and DMA-AES.

The following functionality is supported:

- typical AES working mode
 - AES-128/AES-256 encryption and decryption are compatible with NIST FIPS 197
- DMA-AES working mode
 - AES-128/AES-256 encryption and decryption are compatible with NIST FIPS 197
 - Block cipher mode, compliant with NIST SP 800-38A
 - * ECB (Electronic Codebook)
 - * CBC (Cipher Block Chaining)
 - * OFB (Output Feedback)
 - * CTR (Counter)
 - * CFB8 (8-bit Cipher Feedback)
 - * CFB128 (128-bit Cipher Feedback)
 - GCM (Galois/Counter Mode), compliant with NIST SP 800-38D
 - interrupt on completion of computation

3.7.2 ECC Accelerator (ECC)

Elliptic Curve Cryptography (ECC) is an approach to public-key cryptography based on the algebraic structure of elliptic curves. ECC allows smaller keys compared to RSA cryptography while providing equivalent security.

ESP32-P4's ECC accelerator can complete various calculations based on different elliptic curves, thus accelerating the ECC algorithm and ECC-derived algorithms (such as ECDSA).

ESP32-P4's ECC accelerator has the following features:

- two different elliptic curves, namely P-192 and P-256 defined in FIPS 186-3
- two optional coordinate systems, Affine coordinate systems and Jacobian coordinate systems
- multiple optional point operations, including point addition, point multiplication, and point verification

- multiple optional modular operations based on the order or modulus of the curve, including modular addition, modular subtraction, modular multiplication, and modular division
- interrupt upon completion of calculation

3.7.3 HMAC Accelerator (HMAC)

The Hash-based Message Authentication Code (HMAC) module computes Message Authentication Codes (MACs) using Hash algorithm SHA-256 and keys as described in RFC 2104. The 256-bit HMAC key is stored in an eFuse key block and can be set as read-protected, i. e., the key is not accessible from outside the HMAC accelerator.

Main features are as follows:

- standard HMAC-SHA-256 algorithm
- Hash result only accessible by configurable hardware peripheral (in downstream mode)
- compatible with challenge-response authentication algorithm
- required keys for the Digital Signature (DS) peripheral (in downstream mode)
- re-enabled soft-disabled JTAG (in downstream mode)

3.7.4 RSA Accelerator (RSA)

The RSA accelerator provides hardware support for high-precision computation used in various RSA asymmetric cipher algorithms, significantly reducing the operation time and software complexity. Compared with RSA algorithms implemented solely in software, this hardware accelerator speeds up RSA algorithms significantly. The RSA accelerator also supports operands of different lengths, which provides more flexibility during the computation.

The following functionality is supported:

- large-number modular exponentiation with two optional acceleration options
- large-number modular multiplication, up to 4096 bits
- large-number multiplication, with operands up to 2048 bits
- operands of different lengths
- interrupt on completion of computation

3.7.5 SHA Accelerator (SHA)

ESP32-P4 integrates an SHA accelerator, which is a hardware device that speeds up the SHA algorithm significantly, compared with a SHA algorithm implemented solely in software. The SHA accelerator integrated in ESP32-P4 has two working modes, Typical SHA and DMA-SHA.

The following functionality is supported:

- the following hash algorithms introduced in FIPS PUB 180-4 Spec
 - SHA-1
 - SHA-224
 - SHA-256

- two working modes
 - typical SHA
 - DMA-SHA
- interleaved function when working in Typical SHA working mode
- interrupt function when working in DMA-SHA working mode

3.7.6 Digital Signature (DS)

A Digital Signature (DS) is used to verify the authenticity and integrity of a message using a cryptographic algorithm. This can be used to validate a device's identity to a server, or to check the integrity of a message.

ESP32-P4 includes a DS module providing hardware acceleration of messages' signatures based on RSA. HMAC is used as the key derivation function to output the DS_KEY key using eFuse as the input key. Subsequently, the DS module uses DS_KEY to decrypt the pre-encrypted parameters and calculate the signature. The whole process happens in hardware so that neither the decryption key for the RSA parameters nor the input key for the HMAC key derivation function can be seen by users while calculating the signature.

The following functionality is supported:

- RSA digital signatures with key length up to 4096 bits
- encrypted private key data, only decryptable by DS module
- SHA-256 digest to protect private key data against tampering by an attacker

3.7.7 Elliptic Curve Digital Signature Algorithm (ECDSA)

In cryptography, the Elliptic Curve Digital Signature Algorithm (ECDSA) offers a variant of the Digital Signature Algorithm (DSA) which uses elliptic-curve cryptography.

ESP32-P4's ECDSA accelerator provides a secure and efficient environment for computing ECDSA signatures. It offers fast computations while ensuring the confidentiality of the signing process to prevent information leakage. This makes it a valuable tool for applications that require high-speed cryptographic operations with strong security guarantees. By using the ECDSA accelerator, users can be confident that their data is being protected without sacrificing performance.

ESP32-P4's ECDSA accelerator

- supports signature generation and verification
- supports two types of elliptic curves, P-192 and P-256 defined in FIPS 186-3
- supports two Hash algorithms for hashing operations of information, SHA-224 and SHA-256 supported by <u>FIPS PUB 180-4 Spec</u>
- provides high-level security with dynamic access control under different operating conditions, preventing key leakage due to any intermediate data leakage

3.7.8 External Memory Encryption and Decryption (XTS_AES)

The ESP32-P4 integrates an External Memory Encryption and Decryption module that complies with the XTS-AES standard algorithm specified in <u>IEEE Std 1619-2007</u>, providing security for users' application code and data stored in the external memory (flash). Users can store proprietary firmware and sensitive data (e.g., credentials for gaining access to a private network) to the off-package flash.

The following functionality is supported:

- general XTS-AES algorithm, compliant with IEEE Std 1619-2007
- software-based manual encryption
- high-speed auto decryption without software's participation
- encryption and decryption functions jointly enabled/disabled by registers configuration, eFuse parameters, and boot mode
- configurable Anti-DPA

3.7.9 Secure Boot

ESP32-P4 integrates a hardware Secure Boot (V2) verification scheme based on either RSA-PSS or ECDSA algorithm. Secure Boot feature ensures that only authenticated software signed by a trusted entity can execute on ESP32-P4. Following are a few highlights of this feature:

- RSA-PSS (3072-bit key) or ECDSA P192/P256 curve-based signing scheme
- up to 3 secure signing keys are supported with independent digest slots in the eFuse
- key revocation support through eFuse

3.7.10 Access Permission Management (APM)

ESP32-P4 integrates an APM module to manage access permissions. The module compares information transmitted over the bus with predefined configurations and decides if to grant access. APM has the following features:

- DMA APM supporting 32 regions with configurable addresses
- APB APM supporting 2 regions with configurable addresses
- APB access assigning independent APM for each peripheral address range based on region control
- managing APB access permissions for HP COREO, HP CORE1 and LP CORE independently
- managing APB access permissions for User Mode and Machine Mode independently
- exception records

3.7.11 True Random Number Generator (TRNG)

The ESP32-P4 contains a true random number generator (TRNG), which generates 32-bit random numbers that can be used for cryptographical operations, among other things.

The TRNG in ESP32-P4 generates true random numbers, which means random numbers generated from a physical process, rather than by means of an algorithm. No number generated within the specified range is more or less likely to appear than any other number.

3.7.12 Key Manager

ESP32-P4 stores and deploys keys with the Key Manager as the security core. Key Manager uses the unique physically unclonable function (PUF) of each chip to generate the hardware unique key (HUK) which is unique to the chip and serves as the root of trust (RoT) for the chip. HUK is automatically generated each time the chip is powered on and disappears when the chip is powered off. In this way, Key Manager secures key storage and deployment.

Key Manager of ESP32-P4 stores key information (non-plaintext information for recovering the key) in external memory, realizing flexible key management functionalities such as unlimited key storage and dynamic key switching.

3.8 Peripheral Pin Configurations

Interface	Signal	Pin	Function
ADC	ADC1_CHO	GPIO16	12-bit SAR ADC
	ADC1_CH1	GPIO17	
	ADC1_CH2	GPIO18	
	ADC1_CH3	GPIO19	
	ADC1_CH4	GPIO20	
	ADC1_CH5	GPIO21	
	ADC1_CH6	GPIO22	>
	ADC1_CH7	GPIO23	
	ADC2_CHO	GPIO49	
	ADC2_CH1	GPI050	
	ADC2_CH2	GPIO51	
	ADC2_CH3	GPI052	
	ADC2_CH4	GPI053	
	ADC2_CH5	GPI054	
TOUCH	TOUCH_CHO	GPIO2	14-channel TOUCH
	TOUCH_CH1	GPIO3	
	TOUCH_CH2	GPIO4	
	TOUCH_CH3	GPI05	
	TOUCH_CH4	GPI06	
	TOUCH_CH5	GPI07	
	TOUCH_CH6	GPI08	
	TOUCH_CH7	GPIO9	
·	TOUCH_CH8	GPI010	
	TOUCH_CH9	GPIO11	
	TOUCH_CH10	GPI012	
	TOUCH_CH11	GPIO13	
	TOUCH_CH12	GPIO14	
	TOUCH_CH13	GPIO15	
JTAG	МТСК	GPIO2	JTAG for software debugging
	MTDI	GPIO3	

Table 3-3. Peripheral Pin Configurations

Interface	Signal	Pin	Function
	MTMS	GPIO4	
	MTDO	GPI05	
UART	UORXD_in	GPIO38	5 UART channels with hardware flow
	UOCTS_in	Any GPIO pins	control and GDMA
	UODSR_in		
	UOTXD_out	GPIO37	
	UORTS_out	Any GPIO pins	
	UODTR_out		
	U1RXD_in	-	
	U1CTS_in	-	
	U1DSR_in	-	
	U1TXD_out	_	
	U1RTS_out	-	
	U1DTR_out	_	
	U2RXD_in	-	
	U2CTS_in		
	U2DSR_in		
	U2TXD_out		
	U2RTS_out		
	U2DTR_out		
	U3RXD_in		
	U3CTS_in		
	U3DSR_in		
	U3TXD_out		
	U3RTS_out		
	U3DTR_out		
	U4RXD_in	-	
	U4CTS_in	-	
	U4DSR_in	-	
	U4TXD_out	-	
	U4RTS_out	_	
	U4DTR_out	-	
LP UART	UORXD_in	Any GPIO pins	5 UART channels with hardware flow
	LPUCTS_in		control
	LPUDSR_in	-	
	 LPUTXD_out	-	
	 LPURTS_out	-	
	LPUDTR_out	_	
	LPURXD_in	-	
20	I2CEXTO_SCL_in	Any GPIO pins	2 I2C channels in slave or master mode
-	I2CEXTO_SDA_in		
	I2CEXT1_SCL_in	-	
	I2CEXT1_SDA_in	-	
	I2CEXTO_SCL_out	-	
	I2CEXTO_SDA_out	-	

Interface	Signal	Pin	Function
	I2CEXT1_SCL_out		
	I2CEXT1_SDA_out	_	
LP I2C	LPI2C_SCL_in/out	Any GPIO pins	One LP I2C channel in slave or master mode
	LPI2C_SDA_in/out	_	
I3C master	I3CMST_SCL	GPIO32	One I3C master for controlling the pull-up
	I3CMST_SDA	GPIO33	 One LP I2C channel in slave or masmode One I3C master for controlling the pull-resistor. If the built-in pull-up resistor is used, SCL can only use GPIO32 and can only use GPIO33. There is no limitatin pins if the external pull-up is used One I3C slave Eight independent PWM channels Stereo input and output from/to the audio codec. Three I2S interfaces supp full-duplex/half-duplex TDM and PDM
	I3CMST_SCL_in/out	Any GPIO pins	is used, SCL can only use GPIO32 and SDA
	I3CMST_SDA_in/out	_	can only use GPIO33. There is no limitation
	I3CMST_SCL_pullup	_	in pins if the external pull-up is used
	I3CMST_SDA_pullup	_	
I3C slave	I3CSLV_SCL_in/out	Any GPIO pins	One I3C slave
	I3CSLV_SDA_in/out		
LED PWM	ledc_ls_sig_out0~7	Any GPIO pins	Eight independent PWM channels
128	I2SOO_BCK_in	Any GPIO pins	
	I2SO_MCLK_in		audio codec. Three I2S interfaces support
	 I2SOO_WS_in		
	 I2S0I_SD_in		input/output. Among these, I2SO supports
	I2SOI_BCK_in		
	 I2S0I_WS_in		
	 2S0I_SD1_in		
	 I2S0I_SD2_in		
	12S0I_SD3_in		
	I2SOO_BCK_out		
	I2SO_MCLK_out		
	12S00_WS_out		
	I2SOO_SD_out	-	
	I2SOI_BCK_out	_	
	I2SOI_WS_out	-	
	I2SOO_SD1_out	_	
	I2S10_BCK_in	_	
	I2S1_MCLK_in	-	
	12S10_WS_in	_	
	I2S1I_SD_in	_	
	I2S1I_BCK_in	_	
	I2S1I_WS_in	-	
	I2S10_BCK_out	_	
·	I2S1_MCLK_out	-	
	I2S10_WS_out	_	
	 I2S10_SD_out	-	
	I2S1I_BCK_out	-	
	 2S1I_WS_out	-	
	 I2S20_BCK_in	-	
	I2S2_MCLK_in	-	
	12S20_WS_in	1	

Interface	Signal	Pin	Function
	I2S2I_SD_in		
	I2S2I_BCK_in		
	I2S2I_WS_in		
	I2S2O_BCK_out		
	I2S2_MCLK_out		
	I2S2O_WS_out		
	I2S2O_SD_out		
	I2S2I_BCK_out		
	I2S2I_WS_out		
LP I2S	LPI2SO_BCK_in	Any GPIO pins	Stereo input and output from/to the
	LPI2SI_BCK_in		audio codec, supporting TDM 16-bit data
	LPI2SI_WS_in		input, PDM-PCM input, and enabling built-in
	LPI2SI_BCK_out		VAD to generate interrupt and wake-up
	LPI2SI_WS_out		signals.
Remote Control	RMT_SIG_INO~3	Any GPIO pins	Two channels for an IR transceiver of
Peripheral	RMT_SIG_OUTO~3		various waveforms
GPSPI2	 SPI2CLK_in/out	Any GPIO pins	Master mode and slave mode of
	 SPI2CS_in/out		SPI, Dual SPI, Quad SPI and QPI,
	 SPI2CS1~5_out		and master mode of Octal SPI
	 SPI2D_in/out		and OPI
	 SPI2Q_in/out		Four modes of SPI transfer
	 SPI2WP_in/out		format
	 SPI2HD_in/out		Configurable SPI frequency
	 SPI2D4_in/out		64-byte FIFO or GDMA buffer
	 SPI2D5_in/out		
	SPI2D7_in/out		
	SPI2DQS_out		
GPSPI3	SPI3CLK_in/out	Any GPIO pins	Master mode and slave mode of
	SPI3CS_in/out	,	SPI, Dual SPI, Quad SPI, and QPI
	SPI3CS1~2_out		Four modes of SPI transfer
	SPI3D_in/out		format
	SPI3Q_in/out		Configurable SPI frequency
	SPI3WP_in/out		64-byte FIFO or GDMA buffer
	SPI3HD_in/out		, ,
LP SPI	LPSPICLK_in/out	Any GPIO pins	LP SPI interface
	LPSPICS_in/out		
	LPSPID_in/out		
	LPSPIQ_in/out		
TWAI®	TWAIO_RX	Any GPIO pins	Three TWAI [®] interfaces, which are
	TWAIO_TX		compatible with ISO 11898-1 protocol (CAN
	TWAIO_TX TWAIO_BUS_OFF_ON		Specification 2.0)
	TWAIO_DOS_ON _ON		
	TWAIO_CEROOT TWAIO_STANDBY		
	I INAIO OTANUUT		

Interface	Signal	Pin	Function
	TWAI1_TX		
	TWAI1_BUS_OFF_ON		
	TWAI1_CLKOUT		
	TWAI1_STANDBY		
	TWAI2_RX		
	TWAI2_TX		
	TWAI2_BUS_OFF_ON		
	TWAI2_CLKOUT		
	TWAI2_STANDBY		
Pulse counter	PCNT_SIG_CH0_in0~3	Any GPIO pins	Capture pulse and count pulse edges in
	PCNT_SIG_CH1_in0~3		seven modes
	PCNT_CTRL_CHO_inO~3		
	PCNT_CTRL_CH1_in0~3		
	PCNT_RST_in0~3	-	
MCPWM	PWM0_SYNC0~2_in	Any GPIO pins	2 MCPWM input and output pins.
	PWM0_out0a		Signals include:
	PWM0_out0b	1	PWM differential output signals
	PWM0_out1a		fault input signals to be detected
	PWM0_F0~2_in		input signals to be captured
	PWM0_out1b		external clock synchronization
	PWM0_out2a		signals
	PWM0_out2b		
	PWM0_CAP0~2_in	-	
	PWM1_SYNC0~2_in		
	PWM1_outOa		
	PWM1_outOb		
	PWM1_out1a	-	
	PWM1_F0~2_in	-	
	PWM1_out1b	-	
	PWM1_out2a	-	
	PWM1 out2b	-	
	PWM1_CAP0~2_in	-	
PARLIO	PARL_RX_DATAO~15	Any GPIO pins	A module for parallel data transfer, with
ANEIO	PARL_TX_DATAO~15		16 pins to receive parallel data
	PARL_RX_CLK_in/_out	-	 16 pins to transmit parallel data
	PARL_TX_CLK_in/_out	-	 1 receiver clock pin (clock input)
			 2 transmitter clock pins (clock
			input and output)
USB Serial/JTAG	USB_D-	GPI024/26	USB-to-serial converter and USB-to-JTAG
	USB_D+	GPI025/27	(The pin functions of USB_D- and USB_D+
	000_0		are interchangeable. GPI024/25 and
			GPI026/27 are the D+ and D- pins of two
			USB PHY. USB Serial/JTAG can use any
			one of them, and the default one is
	I	I	GPI024/25)

Interface	Signal	Pin	Function
USB 2.0 OTG	USB_D-	GPI024/26	USB 2.0 OTG full-speed (The pin functions
full-speed	USB_D+	GPI025/27	of USB_D- and USB_D+ are interchange-
	IDDIQ_in	Any GPIO pins	able. GPI024/25 and GPI026/27 are the
	AVALID_in		D+ and D- pins of two USB PHY. USB
	VBUSVALID_in		2.0 OTG can use any one of them, and the
	SRPBVALID_in		default one is GPIO26/27)
	SRPSESSEND_in		
	SRPDISCHRGVBUS_out		
	SRPCHRGVBUS_out		
	DRVVBUS_out		
	IDPULLUP_out		
	DPPULLDOWN_out		
	DMPULLDOWN_out	-	
USB 2.0 OTG	USB_D-	DM	USB 2.0 OTG high-speed interface
high-speed	USB_D+	DP	
0	ADPPRB_in	Any GPIO pins	
	ADPSNS_in		
	 DRVBUS_out		
	ADPCHRG_out		
	ADPDISCHRG_out		
	ADPPRBEN_out		
	ADPSNSEN_out		
	PHY_REFCLK_in		
USB Serial/JTAG	USB_JTAG_TDO_BRG_in	Any GPIO pins	ESP32-P4 can be used as a bridge
Bridge	USB_JTAG_TDI_BRG_out		between the USB port and the JTAG
2	USB_JTAG_TMS_BRG_out	-	port
	USB_JTAG_TCK_BRG_out		
	USB_JTAG_TRST_BRG_out		
HP CORE	CORE_GPIO_in/out_0~15	Any GPIO pins	HP CORE fast GPIO
FAST IO			
Analog PAD Voltage	ANA COMPO inO	GPIO51	Analog PAD voltage comparator
Comparator	ANA_COMPO_in1	GPI052	Analog I Ab voltage comparator
Comparator	ANA_COMP1_in0	GPI053	-
	ANA_COMP1_in1	GPI054	-
	ANA_COMP0_out	Any GPIO pins	-
	ANA_COMP1_out		
SDIO3.0	SD1_DO	GPIO39	SDIO 3.0 interface
30103.0			
	SD1_D1	GPIO40	-
	SD1_D2	GPIO41	-
	SD1_D3	GPIO42	-
	SD1_CLK	GPIO43	
	SD1_CMD	GPIO44	-
	SD1_D4	GPIO45	-
	SD1_D5	GPIO46	

Interface	Signal	Pin	Function
	SD1_D6	GPIO47	
	SD1_D7	GPIO48	
	SD1_DETECT_N_in	Any GPIO pins	
	SD1_INT_N_in		
	SD1_WRITE_PRT_in		
	SD1_DATA_STRB_in	-	
	SD1_RST_N_out		
SDIO2.0	SD2_D0_in/out	Any GPIO pins	SDIO 2.0 interface
	SD2_D1_in/out	-	
	SD2_D2_in/out	-	
	SD2_D3_in/out	-	
	SD2_CLK_out	-	
	SD2_CMD_in/out	-	
	SD2_D4_in/out	-	
	SD2_D5_in/out	-	
	SD2_D6_in/out		
	SD2_D7_in/out		
	SD2_DETECT_N_in		
	SD2_INT_N_in		
	SD2_WRITE_PRT_in		
	SD2_DATA_STRB_in		
	SD2_RST_N_out		
	SD_CMD_PULLUPEN_N_out		
EMAC	RMII_RXDV	GPI028/45/51	Fast Ethernet RMII interface
	RMII_RXDO	GPI029/46/52	
	RMII_RXD1	GPI030/47/53	
	RMII_RXER	GPI031/48/54	
	RMII_CLK	GPI032/44/50	
	RMII_TXEN	GPI033/40/49	
	RMII_TXDO	GPI034/41	
	RMII_TXD1	GPI035/42	
	RMII_TXER	GPI036/43	
	MII_RXCLK	Any GPIO pins	Fast Ethernet MII interface
	MII_RXDV		
	MII_RXDO		
	MII_RXD1		
	MII_RXD2		
~	MII_RXD3		
	MII_RXER	1	
	MII_TXCLK		
	MII_TXEN		
	MII_TXDO	-	
	MII_TXD1		
	MII_TXD2		
	MII_TXD3	1	

Interface	Signal	Pin	Function
	MII_TXER		
	MDI_in	Any GPIO pins	Fast Ethernet MDIO interface
	MDO_out		
	MDC_out		
	COL_IN	Any GPIO pins	Other Fast Ethernet interfaces
	CRS_IN		
CAM Interface	CAMCLK_out	Any GPIO pins	DVP interface for camera
	CAMCLK_in		
	CAM_HENABLE_in		
	CAM_HSYNC_in	_	
	CAM_VSYNC_in		
	CAM_DATA_in0~15		
LCD Interface	LCDCLK_out	Any GPIO pins	24-bit display interface
	LCD_HENABLE_out		
	LCD_HSYNC_out		
	LCD_VSYNC_out		
	LCD_DATA_out0~23		
	LCD_CS_out		
	LCD_DC_out		
MIPI CSI	CSI_DATANO	CSI_DATANO	MIPI CSI interface
	CSI_DATAPO	CSI_DATAPO	
	CSI_CLKN	CSI_CLKN	
	CSI_CLKP	CSI_CLKP	
	CSI_DATAN1	CSI_DATAN1	
	CSI_DATAP1	CSI_DATAP1	
	CSI_REXT	CSI_REXT	
MIPI DSI	DSI_DATANO	DSI_DATANO	MIPI DSI interface
	DSI_DATAPO	DSI_DATAPO	
	DSI_CLKN	DSI_CLKN	
	DSI_CLKP	DSI_CLKP	
	DSI_DATAN1	DSI_DATAN1	
	DSI_DATAP1	DSI_DATAP1	
	DSI_REXT	DSI_REXT	
SPI Flash Interface	FLASH_CS	FLASH_CS	Flash MSPI interface
	FLASH_Q	FLASH_Q	
	FLASH_WP	FLASH_WP	
	FLASH_HOLD	FLASH_HOLD]
	FLASH_CK	FLASH_CK	
	FLASH_D	FLASH_D	

4 Electrical Characteristics

The values presented in this section are preliminary and may change with the final release of this datasheet.

4.1 Absolute Maximum Ratings

Stresses beyond the absolute maximum ratings listed in the table below may cause permanent damage to the device. These are stress ratings only, and do not refer to the functional operation of the device.

Parameter	Description	Min	Max	Unit
VDDPST_1, VDDPST_LDO,	Voltage applied to power supply			
VDDPST_DCDC, VDDA, VBAT,	pins per power domain	-0.3	3.6	V
VDDPST				
VDDPST_2, VDDPST_3,	Voltage applied to I/O power supply	-0.3	3.6	V
VDDPST_4, VDDPST_5, VDDPST_6	pins per power domain	0.0	0.0	v
VDD_HP_0, VDD_HP_1,	Voltage applied to core power sup-			
VDD_HP_2, VDD_HP_3	ply pins per power domain (from	0	1.3	V
	DCDC)			
	Voltage applied to MIPI PHY power	0	2.75	V
VDD_MIPI_DPHY	supply pins per power domain	0	2.75	v
VCCA	Voltage applied to USB_PHY power	0.66	3.96	V
VCCA	supply pins per power domain	-0.66	3.90	v
T _{STORE}	Storage temperature	-40	150	°C

Table 4-1.	Absolute	Maximum	Ratings
------------	----------	---------	---------

4.2 Recommended Operating Conditions

Table 4-2. Recommended Operating Conditions

Parameter	Description	Min	Тур	Max	Unit
VDDPST_1, VDDPST_LDO,	Voltage applied to power supply	3.0	3.3	3.6	V
VDDPST_DCDC, VDDA, VBAT	pins per power domain				
VDDPST_2, VDDPST_3, VDDPST_4, VDDPST_5, VDDPST_6	Voltage applied to I/O power supply pins per power domain	1.65/3.0	1.8/3.3	1.95/3.6	V
VDD_HP_0, VDD_HP_1, VDD_HP_2, VDD_HP_3	Voltage applied to core power sup- ply pins per power domain (from DCDC)	0.99	1.1	1.21	V
VDD_MIPI_DPHY	Voltage applied to MIPI PHY power supply pins per power domain	2.25	2.5	2.75	V
VCCA	Voltage applied to USB_PHY power supply pins per power domain	2.97	3.3	3.63	V

Cont'd on next page

Parameter	Description	Min	Тур	Max	Unit
I _{VDD} ¹	Current supplied to core	0.5	_	_	Α
T_A	Ambient temperature	-40	_	85	°C

 $^{\rm 1}$ The output current of VDD_HP_x should be 500 mA or more.

4.3 VFB1_VO1 Output Characteristics

Table 4-3. VDD_SPI Output Characteristics

Parameter	Description	Тур	Unit
R_{VFB1}	On-resistance in 3.3 V mode	7.5	Ω

In real-life applications, when VFB1_VO1 works in 3.3 V output mode, VFB1_VO1 is generally used to drive flash, and VDDPST_LDO may be affected by R_{SPI} . For example, when VDDPST_LDO is used to drive a 3.3 V flash, it should comply with the following specifications:

VDDPST_LDO > VDD_flash_min + I_flash_max * R_{VFB1}

Among which, VDD_flash_min is the minimum operating voltage of the flash, and I_flash_max the maximum current.

For more information, please refer to section 2.3 Power Scheme.

4.4 DC Characteristics (3.3 V, 25 °C)

Parameter	Description	Min	Тур	Max	Unit
C_{IN}	Pin capacitance	—	2	—	рF
V_{IH}	High-level input voltage	0.75 × VDD ¹	—	VDD ¹ + 0.3	V
V_{IL}	Low-level input voltage	-0.3	—	$0.25 \times VDD^1$	V
$ _{IH}$	High-level input current	—	—	50	nA
$ _{IL}$	Low-level input current	—	—	50	nA
V_{OH}^{2}	High-level output voltage $0.8 \times VDD^1$		—	V	
V_{OL}^2	Low-level output voltage	—	—	$0.1 \times VDD^1$	V
I _{OH}	High-level source current (VDD1= 3.3 V,		40		mA
	$V_{OH} \ge 2.64 V$, PAD_DRIVER = 3)		40		ША
I _{OL}	Low-level sink current (VDD1= 3.3 V, V_{OL} =	_	28	_	mA
	0.495 V, PAD_DRIVER = 3)				
R_{PU}	Pull-up resistor – 45		—	kΩ	
R_{PD}	Pull-down resistor	—	45	-	kΩ
V_{IH_nRST}	Chip reset release voltage 0.75 × VDD ¹ – VDD ¹ + 0.3		VDD ¹ + 0.3	V	
V_{IL_nRST}	Chip reset voltage	-0.3	_	$0.25 \times VDD^1$	V

Table 4-4. DC Characteristics (3.3 V, 25 °C)

¹ VDD is the I/O voltage for a particular power domain of pins.

 $^{\rm 2}$ V_{OH} and V_{OL} are measured using high-impedance load.

Revision History

Date	Version	Release notes
2024-01-09	v0.2	Preliminary release
2023-07-26	v0.1	Preliminary release

www.espressif.com

Disclaimer and Copyright Notice

Information in this document, including URL references, is subject to change without notice. ALL THIRD PARTY' S INFORMATION IN THIS DOCUMENT IS PROVIDED AS IS WITH NO

ALL THIRD PARTY'S INFORMATION IN THIS DOCUMENT IS PROVIDED AS IS WITH NO WARRANTIES TO ITS AUTHENTICITY AND ACCURACY.

NO WARRANTY IS PROVIDED TO THIS DOCUMENT FOR ITS MERCHANTABILITY, NON-INFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, NOR DOES ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

All liability, including liability for infringement of any proprietary rights, relating to use of information in this document is disclaimed. No licenses express or implied, by estoppel or otherwise, to any intellectual property rights are granted herein.

The Wi-Fi Alliance Member logo is a trademark of the Wi-Fi Alliance. The Bluetooth logo is a registered trademark of Bluetooth SIG.

All trade names, trademarks and registered trademarks mentioned in this document are property of their respective owners, and are hereby acknowledged.

Copyright © 2024 Espressif Systems (Shanghai) Co., Ltd. All rights reserved.